REVIEWS

Progress in Visible-Light Catalyzed C—F Bond Functionalization of gem-Difluoroalkenes

  • Zhiqing Li ,
  • Xiaoyang Qiu ,
  • Jiang Lou ,
  • Qiang Wang
Expand
  • a State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353
    b Shandong Weifang Rainbow Chemical Co. Ltd., Weifang, Shandong 261000
* Corresponding authors. E-mail: ,

Received date: 2021-06-06

  Revised date: 2021-07-01

  Online published: 2021-07-20

Supported by

National Natural Science Foundation of China(22001140); Natural Science Foundation of Shandong Province(ZR2020QB002); Outstanding Youth Innovation Team Project of Shandong Provincial University(242007040109)

Abstract

Monofluoroalkene structural units widely exist in complex functional molecules such as drugs and natural products. They are also critical organic synthons with broad applications in medicine, biology, materials and other fields. Therefore, it is of great scientific significance and practical value to develop green, economical and efficient methods for synthesizing monofluoroalkenes. Functionalization of the C—F bond of gem-difluoroalkenes is an effective method to prepare monofluoroalkenes. The research progress in C—F bond functionalization of gem-difluoroalkenes under visible-light redox catalysis and visible-light redox/transition-metal synergistic catalysis, including the substrate scope, reaction mechanism, and synthesis applications, is summarized. Finally, the prospects of this reaction are also discussed.

Cite this article

Zhiqing Li , Xiaoyang Qiu , Jiang Lou , Qiang Wang . Progress in Visible-Light Catalyzed C—F Bond Functionalization of gem-Difluoroalkenes[J]. Chinese Journal of Organic Chemistry, 2021 , 41(11) : 4192 -4207 . DOI: 10.6023/cjoc202106013

References

[1]
(a) Johnson, B. M.; Shu, Y.-Z.; Zhuo, X.; Meanwell, N. A. J. Med. Chem. 2020, 63, 6315.
[1]
(b) Mei, H.; Han, J.; Fustero, S.; Medio-Simon, M.; Sedgwick, D. M.; Santi, C.; Ruzziconi, R.; Soloshonok, V. A. Chem.-Eur. J. 2019, 25, 11797.
[1]
(c) Liu, H.; Ge, L.; Wang, D.-X.; Chen, N.; Feng, C. Angew. Chem., Int. Ed. 2019, 58, 3918.
[1]
(d) Rong, J.; Ni, C.; Wang, Y.; Kuang, C.; Gu, Y.; Hu, J. Acta Chim. Sinica 2017, 75, 105. (in Chinese)
[1]
(荣健, 倪传法, 王云泽, 匡翠文, 顾玉诚, 胡金波, 化学学报, 2017, 75, 105.)
[1]
(e) Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceña, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. Chem. Rev. 2016, 116, 422.
[1]
(f) Zhang, K.; Xu, X.-H.; Qing, F.-L. Chin. J. Org. Chem. 2015, 35, 556. (in Chinese)
[1]
(张柯, 徐修华, 卿凤翎, 有机化学, 2015, 35, 556.)
[1]
(g) Xiao, Y.; Pan, Q.; Zhang, X. Acta Chim. Sinica 2015, 73, 387. (in Chinese)
[1]
(肖玉兰, 潘强, 张新刚, 化学学报, 2015, 73, 387.)
[1]
(h) Gillis, E. P.; Eastman, K. J.; Hill, M. D.; Donnelly, D. J.; Meanwell, N. A. J. Med. Chem. 2015, 58, 8315.
[2]
(a) O'Hagan, D.; Deng, H. Chem. Rev. 2015, 115, 634.
[2]
(b) Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem., Int. Ed. 2013, 52, 8214.
[2]
(c) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
[2]
(d) Thayer, A. M. Chem. Eng. News 2006, 84, 15.
[3]
(a) Sun, H.; Liu, T.; Yu, J.; Lau, T. K.; Zhang, G.; Zhang, Y.; Su, M.; Tang, Y.; Ma, R.; Liu, B.; Liang, J.; Feng, K.; Lu, X.; Guo, X.; Gao, F.; Yan, H. Energy Environ. Sci. 2019, 12, 3328.
[3]
(b) Li, X.; Pan, F.; Sun, C.; Zhang, M.; Wang, Z.; Du, J.; Wang, J.; Xiao, M.; Xue, L.; Zhang, Z.-G.; Zhang, C; Liu, F.; Li, Y. Nat. Commun. 2019, 10, 519.
[3]
(c) Ge, J.; Fan, L.; Wang, J.; Zhang, Q.; Liu, Z.; Zhang, E.; Liu, Q.; Yu, X.; Lu, B. Adv. Energy Mater. 2018, 8, 1801477.
[3]
(d) Ni, C.; Hu, J. Chem. Soc. Rev. 2016, 45, 5441.
[3]
(e) Harsanyi, A.; Sandford, G. Org. Process Res. Dev. 2014, 18, 981.
[3]
(f) Pagliaro, M.; Ciriminna, R. J. Mater. Chem. 2005, 15, 4981.
[3]
(g) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
[4]
(a) Koley, S.; Altman, R. A. Isr. J. Chem. 2020, 60, 313.
[4]
(b) Drouin, M.; Hamel, J.-D.; Paquin, J.-F. Synthesis 2018, 50, 881.
[4]
(c) Zhang, X.; Cao, S. Tetrahedron Lett. 2017, 58, 375.
[4]
(d) Liao, F.; Yu, J.; Zhou, J. Chin. J. Org. Chem. 2017, 37, 2175. (in Chinese)
[4]
(廖富民, 余金生, 周剑, 有机化学, 2017, 37, 2175.)
[4]
(e) Landelle, G.; Bergeron, M.; Turcotte-Savard, M.; Paquin, J. Chem. Soc. Rev. 2011, 40, 2867.
[4]
(f) Yanai, H.; Taguchi, T. Eur. J. Org. Chem. 2011, 5939.
[5]
(a) Sommer, H.; Fürstner, A. Chem.-Eur. J. 2017, 23, 558.
[5]
(b) Zhao, Y.; Jiang, F.; Hu, J. J. Am. Chem. Soc. 2015, 137, 5199.
[5]
(c) Malo-Forest, M.; Landelle, G.; Roy, J.-A.; Lacroix, J.; Gaudreault, R.-C.; Paquin, J.-F. Bioorg. Med. Chem. Lett. 2013, 23, 1712.
[5]
(d) Osada, S.; Sano, S.; Ueyama, M.; Chuman, Y.; Kodama, H.; Sakaguchi, K. Bioorg. Med. Chem. 2010, 18, 605.
[5]
(e) Oishi, S.; Kamitani, H.; Kodera, Y.; Watanabe, K.; Kobayashi, K.; Narumi, T.; Tomita, K.; Ohno, H.; Naito, T.; Kodama, E.; Matsuoka, M.; Fujii, N. Org. Biomol. Chem. 2009, 7, 2872.
[6]
(a) Drouin, M.; Wadhwani, P.; Grage, S. L.; Burck, J.; Reichert, J.; Tremblay, S.; Mayer, M. S.; Diel, C.; Staub, A.; Paquin, J.-F.; Ulrich, A. S. Chem.-Eur. J. 2020, 26, 1511.
[6]
(b) Drouin, M.; Arenas, J. L.; Paquin, J. F. ChemBioChem 2019, 20, 1817.
[6]
(c) Drouin, M.; Paquin, J.-F. Beilstein J. Org. Chem. 2017, 13, 2637.
[6]
(d) Zhao, Y.; Jiang, F.; Hu, J. J. Am. Chem. Soc. 2015, 137, 5199.
[7]
Macias, F. A.; De Siqueira, J. M.; Chinchilla, N.; Marin, D.; Varela, R. M.; Molinillo, J. M. G. J. Agric. Food Chem. 2006, 54, 9843.
[8]
(a) Babudri, F.; Cardone, A.; Farinola, G. M.; Martinelli, C.; Mendichi, R.; Naso, F.; Striccoli, M. Eur. J. Org. Chem. 2008, 1977.
[8]
(b) Babudri, F.; Farinola, G. M.; Naso, F.; Ragni, R. Chem. Commun. 2007, 1003.
[9]
(a) Guérin, D.; Gaumont, A.-C.; Dez, I.; Mauduit, M.; Couve- Bonnaire, S.; Pannecoucke, X. ACS Catal. 2014, 4, 2374.
[9]
(b) Dai, W.; Xiao, J.; Jin, G.; Wu, J.; Cao, S. J. Org. Chem. 2014, 79, 10537.
[9]
(c) Debien, L.; Quiclet-Sire, B.; Zard, S. S. Org. Lett. 2012, 14, 5118.
[9]
(d) Wong, O. A.; Shi, Y. J. Org. Chem. 2009, 74, 8377.
[9]
(e) Dutheuil, G.; Couve-Bonnaire, S.; Pannecoucke, X. Angew. Chem., Int. Ed. 2007, 46, 1290.
[10]
(a) Drouin, M.; Hamel, J.-D.; Paquin, J.-F. Synlett 2016, 27, 821.
[10]
(b) Champagne, P. A.; Desroches, J.; Hamel, J.-D.; Vandamme, M.; Paquin, J.-F. Chem. Rev. 2015, 115, 9073.
[10]
(c) Couve-Bonnaire, S.; Cahard, D.; Pannecoucke, X. Org. Biomol. Chem. 2007, 5, 1151.
[11]
(a) Zhang, H.; Wang, E.; Geng, S.; Liu, Z.; He, Y.; Peng, Q.; Feng, Z. Angew. Chem., Int. Ed. 2021, 60, 10211.
[11]
(b) Sakaguchi, H.; Ohashi, M.; Ogoshi, S. Angew. Chem., Int. Ed. 2018, 57, 328.
[11]
(c) Tan, D.-H.; Lin, E.; Ji, W.-W.; Zeng, Y.-F.; Fan, W.-X.; Li, Q.; Gao, H.; Wang, H. Adv. Synth. Catal. 2018, 360, 1032.
[12]
(a) Yan, S.-S.; Wu, D.-S.; Ye, J.-H.; Gong, L.; Zeng, X.; Ran, C.-K.; Gui, Y.-Y.; Li, J.; Yu, D.-G. ACS Catal. 2019, 9, 6987.
[12]
(b) Hu, J.; Zhao, Y.; Shi?, Z. Nat. Catal. 2018, 1, 860.
[12]
(c) Ito, H.; Seo, T.; Kojima, R.; Kubota, K. Chem. Lett. 2018, 47, 1330.
[12]
(d) Sakaguchi, H.; Uetake, Y.; Ohashi, M.; Niwa, T.; Ogoshi, S.; Hosoya, T. J. Am. Chem. Soc. 2017, 139, 12855.
[12]
(e) Zhang, J.; Dai, W.; Liu, Q.; Cao, S. Org. Lett. 2017, 19, 3283.
[12]
(f) Thornbury, R. T.; Toste, F. D. Angew. Chem., Int. Ed. 2016, 55, 11629.
[12]
(g) Xiong, Y.; Huang, T.; Ji, X.; Wu, J.; Cao, S. Org. Biomol. Chem. 2015, 13, 7389.
[12]
(h) Ohashi, M.; Saijo, H.; Shibata, M.; Ogoshi, S. Eur. J. Org. Chem. 2013, 443.
[13]
(a) Dai, W.; Shi, H.; Zhao, X.; Cao, S. Org. Lett. 2016, 18, 4284.
[13]
(b) Dai, W.; Zhang, X.; Zhang, J.; Lin, Y.; Cao, S. Adv. Synth. Catal. 2016, 358, 183.
[13]
(c) Dai, W.; Xiao, J.; Jin, G.; Wu, J.; Cao, S. J. Org. Chem. 2014, 79, 10537.
[13]
(d) Yamada, S.; Shimoji, K.; Takahashi, T.; Konno, T.; Ishihara, T. Chem.-Asian J. 2010, 5, 1846.
[13]
(e) Yamada, S.; Noma, M.; Hondo, K.; Konno, T.; Ishihara, T. J. Org. Chem. 2008, 73, 522.
[13]
(f) Yamada, S.; Noma, M.; Konno, T.; Ishihara, T.; Yamanaka, H. Org. Lett. 2006, 8, 743.
[14]
(a) Zhang, J.; Wang, B.; Liu, S.; Cao, S. Chin. J. Org. Chem. 2019, 39, 249. (in Chinese)
[14]
(张娟, 王碧云, 刘熠森, 曹松, 有机化学, 2019, 39, 249.)
[14]
(b) Ohashi, M.; Kambara, T.; Hatanaka, T.; Saijo, H.; Doi, R.; Ogoshi, S. J. Am. Chem. Soc. 2011, 133, 3256.
[14]
(c) Takachi, M.; Kita, Y.; Tobisu, M.; Fukumoto, Y.; Chatani, N. Angew. Chem., Int. Ed. 2010, 49, 8717.
[14]
(d) Saeki, T.; Takashima, Y.; Tamao, K. Synlett 2005, 1771.
[15]
Wu, F.-P.; Yuan, Y.; Liu, J.; Wu, X.-F. Angew. Chem., Int. Ed. 2021, 60, 8818.
[16]
Ma, Q.; Wang, Y.; Tsui, G. C. Angew. Chem., Int. Ed. 2020, 59, 11293.
[17]
(a) Song, S.; Liu, H.; Wang, L.; Zhu, L.; Loh, T.-P.; Feng, C. Chin. J. Chem. 2019, 37, 1036.
[17]
(b) Zhou, L.; Zhu, C.; Loh, T.-P.; Feng, C. Chem. Commun. 2018, 54, 5618.
[17]
(c) Tian, M.; Yang, X.; Zhang, B.; Liu, B.; Li, X. Org. Chem. Front. 2018, 5, 3406.
[17]
(d) Li, N.; Chang, J.; Kong, L.; Li, X. Org. Chem. Front. 2018, 5, 1978.
[17]
(e) Gong, T.-J.; Xu, M.-Y.; Yu, S.-H.; Yu, C.-G.; Su, W.; Lu, X.; Xiao, B.; Fu, Y. Org. Lett. 2018, 20, 570.
[17]
(f) Murakami, N.; Yoshida, M.; Yoshino, T.; Matsunaga, S. Chem. Pharm. Bull. 2018, 6, 51.
[17]
(g) Wu, J.-Q.; Zhang, S.-S.; Gao, H.; Qi, Z.; Zhou, C.-J.; Ji, W.-W.; Liu, Y.; Chen, Y.; Li, Q.; Li, X.; Wang, H. J. Am. Chem. Soc. 2017, 139, 3537.
[17]
(h) Zell, D.; Dhawa, U.; Müller, V.; Bursch, M.; Grimme, S.; Ackermann, L. ACS Catal. 2017, 7, 4209.
[17]
(i) Cai, S.-H.; Ye, L.; Wang, D.-X.; Wang, Y.-Q.; Lai, L.-J.; Zhu, C.; Feng, C.; Loh, T.-P. Chem. Commun. 2017, 53, 8731.
[17]
(j) Kong, L.; Liu, B.; Zhou, X.; Wang, F.; Li, X. Chem. Commun. 2017, 53, 10326.
[17]
(k) Zell, D.; Meller, V.; Dhawa, U.; Bursch, M.; Presa, R. R.; Grimme, S.; Ackermann, L. Chem.-Eur. J. 2017, 23, 12145.
[17]
(l) Tian, P.; Feng, C.; Loh, T.-P. Nat. Commun. 2015, 6, 7472.
[18]
(a) Amii, H.; Uneyama, K. Chem. Rev. 2009, 109, 2119.
[18]
(b) Ichikawa, J. Chim. Oggi 2007, 25, 54.
[19]
(a) Cannalire, R.; Pelliccia, S.; Sancineto, L.; Novellino, E.; Tron, G. C.; Giustiniano, M. Chem. Soc. Rev. 2021, 50, 766.
[19]
(b) Yu, X.-Y.; Chen, J.-R.; Xiao, W.-J. Chem. Rev. 2021, 121, 506.
[19]
(c) Li, Z.; Jin, J.; Huang, S. Chin. J. Org. Chem. 2020, 40, 563. (in Chinese)
[19]
(李祯龙, 金健, 黄莎华, 有机化学, 2020, 40, 563.)
[19]
(d) Zhou, Q.-Q.; Zou, Y.-Q.; Lu, L.-Q.; Xiao, W.-J. Angew. Chem., Int. Ed. 2019, 58, 1586.
[19]
(e) Kong, Y.; Xu, W.; Ye, F.; Weng, J. Chin. J. Org. Chem. 2019, 39, 3065. (in Chinese)
[19]
(孔瑶蕾, 徐雯秀, 叶飞霞, 翁建全, 有机化学, 2019, 39, 3065.)
[19]
(f) Parasram, M.; Gevorgyan, V. Chem. Soc. Rev. 2017, 46, 6227.
[20]
(a) Leifert, D.; Studer, A. Angew. Chem., Int. Ed. 2020, 59, 74.
[20]
(b) Wang, S.; Tang, S.; Lei, A. Sci. Bull. 2018, 63, 1006.
[20]
(c) Yi, H.; Zhang, G.; Wang, H.; Huang, Z.; Wang, J.; Singh, A. K.; Lei, A. Chem. Rev. 2017, 117, 9016.
[20]
(d) Xie, J.; Jin, H.; Hashmi, A. S. K. Chem. Soc. Rev. 2017, 46, 5193.
[20]
(e) Togo, H. Advanced Free Radical Reactions for Organic Synthesis, Elsevier, Amsterdam, 2004, pp. 1-2.
[21]
(a) Nobile, E.; Castanheiro, T.; Besset, T. Angew. Chem., Int. Ed. 2021, 60, 12170.
[21]
(b) Wu, X.; Zhu, C. Acc. Chem. Res. 2020, 53, 1620.
[22]
Xie, J.; Yu, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem., Int. Ed. 2016, 55, 9416.
[23]
(a) Wilkinson, B.; Zhu, M.; Priestley, N. D.; Nguyen, H. H. T.; Morimoto, H.; Williams, P. G.; Chan, S. I.; Floss, H. G. J. Am. Chem. Soc. 1996, 118, 921.
[23]
(b) Step, E. N.; Turro, N. J. J. Photochem. Photobiol. A 1994, 84, 249.
[23]
(c) Scaiano, J. C. J. Phys. Chem. 1981, 85, 2851.
[23]
(d) Livant, P.; Lawler, R. G. J. Am. Chem. Soc. 1976, 98, 6044.
[24]
Tian, H.; Xia, Q.; Wang, Q.; Dong, J.; Liu, Y.; Wang, Q. Org. Lett. 2019, 21, 4585.
[25]
(a) Zuo, Z.; Ahneman, D. T.; Chu, L.; Terrett, J. A.; Doyle, A. G.; MacMillan, D. W. C. Science 2014, 345, 437.
[25]
(b) Lowry, M. S.; Goldsmith, J. I.; Slinker, J. D.; Rohl, R.; Pascal, R. A.; Malliaras, G. G.; Bernhard, S. Chem. Mater. 2005, 17, 5712.
[26]
Jeffrey, J. L.; Terrett, J. A.; MacMillan, D. W. C. Science 2015, 349, 1532.
[27]
Xie, J.; Yu, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem., Int. Ed. 2016, 55, 9416.
[28]
(a) Chen, H.; Liu, Y. A.; Liao, X. Synthesis 2021, 53, 1.
[28]
(b) McMurray, L.; McGuire, T. M.; Howells, R. L. Synthesis 2020, 52, 1719.
[28]
(c) Zhou, M.; Qin, P.; Jing, L.; Sun, J.; Du, H. Chin. J. Org. Chem. 2020, 40, 598. (in Chinese)
[28]
(周明东, 覃丕涛, 经理珂, 孙京, 杜海武, 有机化学, 2020, 40, 598.)
[28]
(d) Liu, J.-Q.; Shatskiy, A.; Matsuura, B. S.; Kärkäs, M. D. Synthesis 2019, 51, 2759.
[28]
(e) Rahman, M.; Mukherjee, A.; Kovalev, I. S.; Kopchuk, D. S.; Zyryanov, G. V.; Tsurkan, M. V.; Majee, A.; Ranu, B. C.; Charushin, V. N.; Chupakhin, O. N.; Santra, S. Adv. Synth. Catal. 2019, 361, 2161.
[28]
(f) Nakajima, K.; Miyake, Y.; Nishibayashi, Y. Acc. Chem. Res. 2016, 49, 1946.
[28]
(g) Xuan, J.; Zhang, Z.-G.; Xiao, W.-J. Angew. Chem., Int. Ed. 2015, 54, 15632.
[29]
Li, J.; Lefebvre, Q.; Yang, H.; Zhao, Y.; Fu, H. Chem. Commun. 2017, 53, 10299.
[30]
Yang, H.; Tian, C.; Qiu, D.; Tian, H.; An, G.; Li, G. Org. Chem. Front. 2019, 6, 2365.
[31]
(a) Xu, W.; Ma, J.; Yuan, X.; Dai, J.; Xie, J.; Zhu, C. Angew. Chem., Int. Ed. 2018, 57, 10357.
[31]
(b) Luo, J.; Zhang, J. ACS Catal. 2016, 6, 873
[32]
Galicia, M.; Gonzalez, F. J. J. Electrochem. Soc. 2002, 149, D46.
[33]
(a) Ye, S.; Wu, J. Acta Chim. Sinica 2019, 77, 814. (in Chinese)
[33]
(叶盛青, 吴劼, 化学学报, 2019, 77, 814.)
[33]
(b) Wang, P.-Z.; Chen, J.-R.; Xiao, W.-J. Org. Biomol. Chem. 2019, 17, 6936.
[33]
(c) Milligan, J. A.; Phelan, J. P.; Badir, S. O.; Molander, G. A. Angew. Chem., Int. Ed. 2019, 58, 6152.
[33]
(d) Huang, W.; Cheng, X. Synlett 2017, 28, 148.
[34]
Du, H.-W.; Sun, J.; Gao, Q.-S.; Wang, J.-Y.; Wang, H.; Xu, Z.; Zhou, M.-D. Org. Lett. 2020, 22, 1542.
[35]
Lemos, A.; Lemaire, C.; Luxen, A. Adv. Synth. Catal. 2019, 361, 1500.
[36]
Wang, P.; Chen, J.; Xiao, W. Org. Biomol. Chem. 2019, 17, 6936.
[37]
(a) Yao, H.; Hu, W.; Zhang, W. Molecules 2021, 26, 105.
[37]
(b) Pang, J.; Wu, J.; Wu, F. Chin. J. Org. Chem. 2021, 41, 983. (in Chinese)
[37]
(潘军, 吴晶晶, 吴范宏, 有机化学, 2021, 41, 983.)
[37]
(c) Wu, Y.-C.; Xiao, Y.-T.; Yang, Y.-Z.; Song, R.-J.; Li, J.-H. ChemCatChem 2020, 12, 5312.
[37]
(d) Wu, X.; Zhu, C. Acc. Chem. Res. 2020, 53, 1620.
[37]
(e) Diccianni, J.; Lin, Q.; Diao, T. Acc. Chem. Res. 2020, 53, 906.
[37]
(f) Jiang, H.; Studer, A. Chem. Soc. Rev. 2020, 49, 1790.
[37]
(g) Li, Z.-L.; Fang, G.-C.; Gu, Q.-S.; Liu, X.-Y. Chem. Soc. Rev. 2020, 49, 32.
[37]
(h) Bao, X.; Li, J.; Jiang, W.; Huo, C. Synthesis 2019, 51, 4507.
[37]
(i) Kawamura, S.; Sodeoka, M. Bull. Chem. Soc. Jpn. 2019, 92, 1245.
[37]
(j) Wang, X.; Studer, A. Acc. Chem. Res. 2017, 50, 1712.
[38]
Wang, Q.; Qu, Y.; Tian, H.; Liu, Y.; Song, H.; Wang, Q. Chem.-Eur. J. 2019, 25, 8686.
[39]
(a) Chen, L.; Francis, H.; Carrow, B. P. ACS Catal. 2018, 8, 2989.
[39]
(b) Bulfield, D.; Huber, S. M. J. Org. Chem. 2017, 82, 13188.
[39]
(c) Chen, L.; Sanchez, D. R.; Zhang, B.; Carrow, B. P. J. Am. Chem. Soc. 2017, 139, 12418.
[39]
(d) Handa, S.; Wang, Y.; Gallou, F.; Lipshutz, B. H. Science 2015, 349, 1087.
[39]
(e) Kinzel, T.; Zhang, Y.; Buchwald, S. L. J. Am. Chem. Soc. 2010, 132, 14073.
[39]
(f) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
[40]
(a) Gao, P.; Yuan, C.; Zhao, Y.; Shi, Z. Chem 2018, 4, 2201.
[40]
(b) Kojima, R.; Akiyama, S.; Ito, H. Angew. Chem., Int. Ed. 2018, 57, 7196.
[40]
(c) Lim, S.; Song, D.; Jeon, S.; Kim, Y.; Kim, H.; Lee, S.; Cho, H.; Lee, B. C.; Kim, S. E.; Kim, K.; Lee, E. Org. Lett. 2018, 20, 7249.
[40]
(d) Sakaguchi, H.; Uetake, Y.; Ohashi, M.; Niwa, T.; Ogoshi, S.; Hsoya, T. J. Am. Chem. Soc. 2017, 139, 12855.
[40]
(e) Liu, Y.; Zhou, Y.; Zhao, Y.; Qu, J. Org. Lett. 2017, 19, 946.
[40]
(f) Zhou, J.; Kuntze-Fechner, M. W.; Bertermann, R.; Paul, U. S. D.; Berthel, J. H. J.; Friedrich, A.; Du, Z.; Marder, T. B.; Radius, U. J. Am. Chem. Soc. 2016, 138, 5250
[40]
(g) Guo, W.-H.; Min, Q.-Q.; Gu, J.-W.; Zhang, X. Angew. Chem., Int. Ed. 2015, 54, 9075.
[41]
Xu, W.; Jiang, H.; Leng, J.; Ong, H.-W.; Wu, J. Angew. Chem., Int. Ed. 2020, 59, 4009.
[42]
(a) Zhu, C.; Yue, H.; Chu, L.; Rueping, M. Chem. Sci. 2020, 11, 4051.
[42]
(b) Abreu, M. D.; Belmont, P.; Brachet, E. Eur. J. Org. Chem. 2020, 2020, 1327.
[42]
(c) Zhang, H.-H.; Yu, S. Acta Chim. Sinica 2019, 77, 832. (in Chinese)
[42]
(张洪浩, 俞寿云, 化学学报, 2019, 77, 832.)
[42]
(d) Wang, C.-S.; Dixneuf, P. H.; Soulé, J.-F. Chem. Rev. 2018, 118, 7532.
[42]
(e) Zhou, W.-J.; Zhang, Y.-H.; Gui, Y.-Y.; Sun, L.; Yu, D.-G. Synthesis 2018, 50, 3359.
[42]
(f) Twilton, J.; Le, C.; Zhang, P.; Shaw, M. H.; Evans, R. W.; MacMillan, D. W. C. Nat. Rev. 2017, 1, 0052.
[42]
(g) Ruan, L.; Dong, Z.; Chen, C.; Wu, S.; Sun, J. Chin. J. Org. Chem. 2017, 37, 2544. (in Chinese)
[42]
(阮利衡, 董振诚, 陈春欣, 吴爽, 孙京, 有机化学, 2017, 37, 2544.)
[42]
(h) Skubi, K. L.; Blum, T. R.; Yoon, T. P. Chem. Rev. 2016, 116, 10035.
[42]
(i) Tellis, J. C.; Kelly, C. B.; Primer, D. N.; Jouffroy, M.; Patel, N. R.; Molander, G. A. Acc. Chem. Res. 2016, 49, 1429.
[43]
Zhu, C.; Zhang, Y.-F.; Liu, Z.-Y.; Zhou, L.; Liu, H.; Feng, C. Chem. Sci. 2019, 10, 6721.
[44]
(a) Li, J.; Luo, Y.; Cheo, H. W.; Lan, Y.; Wu, J. Chem 2019, 5, 192.
[44]
(b) Matsui, J. K.; Gutiérrez-Bonet, Á.; Rotella, M.; Alam, R.; Gutierrez, O.; Molander, G. A. Angew. Chem., Int. Ed. 2018, 57, 15847.
[44]
(c) Meng, Q.-Y.; Wang, S.; Huff, G. S.; König, B. J. Am. Chem. Soc. 2018, 140, 3198.
[44]
(d) Tellis, J. C.; Kelly, C. B.; Primer, D. N.; Jouffroy, M.; Patel, N. R.; Molander, G. A. Acc. Chem. Res. 2016, 49, 1429.
[45]
(a) Chuentragool, P.; Yadagiri, D.; Morita, T.; Sarkar, S.; Parasram, M.; Wang, Y.; Gevorgyan, V. Angew. Chem., Int. Ed. 2019, 58, 1794.
[45]
(b) Ratushnyy, M.; Parasram, M.; Wang, Y.; Gevorgyan, V. Angew. Chem., Int. Ed. 2018, 57, 2712.
[45]
(c) Zhou, W.-J.; Cao, G.-M.; Shen, G.; Zhu, X.-Y.; Gui, Y.-Y.; Ye, J.-H.; Sun, L.; Liao, L.-L.; Li, J.; Yu, D.-G. Angew. Chem., Int. Ed. 2017, 56, 15683.
[45]
(d) Parasram, M.; Gevorgyan, V. Chem. Soc. Rev. 2017, 46, 6227.
[46]
Shimomaki, K.; Murata, K.; Martin, R.; Iwasawa, N. J. Am. Chem. Soc. 2017, 139, 9467.
[47]
Wu, L.-H.; Cheng, J.-K.; Shen, L.; Shen, Z.-L.; Loh, T. P. Adv. Synth. Catal. 2018, 360, 3894.
[48]
Nenajdenko, V. G.; Korotchenko, V. N.; Shastin, A. V.; Balenkova, E. S. Russ. Chem. Bull. 2004, 53, 1034.
[49]
(a) Boyd, D. A. Angew. Chem., Int. Ed. 2016, 55, 15486.
[49]
(b) Feng, M.; Tang, B.; Liang, S.; Jiang, X. Curr. Top. Med. Chem. 2016, 16, 1200.
[49]
(c) Ilardi, E. A.; Vitaku, E.; Njardarson, J. T. J. Med. Chem. 2014, 57, 2832.
[50]
(a) Wang, B.; Zhou, Y.; Luo, S.; Luo, X.; Chen, W.; Yang, S.; Wang, Z. Chin. J. Org. Chem. 2021, 41, 171. (in Chinese)
[50]
(王柏文, 周永军, 罗时荷, 罗晓燕, 陈伟清, 杨诗敏, 汪朝阳, 有机化学, 2021, 41, 171.)
[50]
(b) Lou, J.; Wang, Q.; Wu, P.; Wang, H.; Zhou, Y.-G.; Yu, Z. Chem. Soc. Rev. 2020, 49, 4307.
[50]
(c) Yang, W.; Zhang, M.; Chen, W.; Yang, X.; Feng, J. Chin. J. Org. Chem. 2020, 40, 4060. (in Chinese)
[50]
(杨文超, 张明明, 陈旺, 杨小虎, 冯建国, 有机化学, 2020, 40, 4060.)
[50]
(d) Kaiser, D.; Klose, I.; Oost, R.; Neuhaus, J.; Maulide, N. Chem. Rev. 2019, 119, 8701.
[50]
(e) Wang, L.; He, W.; Yu, Z. Chem. Soc. Rev. 2013, 42, 599.
[51]
Wang, J.; Huang, B.; Yang, C.; Xia, W. Chem. Commun. 2019, 55, 11103.
[52]
Li, Y.; Li, X.; Li, X.; Shi, D. Chem. Commun. 2021, 57, 2152.
Outlines

/