Chinese Journal of Organic Chemistry >
Research Progress in the Preparation of Aryl and Alkyl Mixed Phosphates
Received date: 2021-05-31
Revised date: 2021-06-30
Online published: 2021-07-26
Supported by
National Natural Science Foundation of China(21901150)
Aryl and alkyl mixed phosphates are very important phosphorus containing organic compounds, which are widely used in many fields, such as biology, medicine, pesticide, polymer, and material science. The unique physical, chemical, and biological properties of phosphorus-based motifs provide more possibilities for their structural modification, derivatization, and potential application. Therefore, the research on the preparation of these compounds has important theoretical and practical significance. In this paper, the research progress of the synthesis methodologies of aryl and alkyl mixed phosphate in the past few decades is reviewed. The application examples are listed. The experimental methods and development process of the conversion of various kinds of phosphorus containing reagents to target compounds are summarized. The characteristics, mechanism, and application of the reaction are discussed selectively as well. We hope that this review can provide a reference for the development of new preparation protocols of mixed phosphate, and provide some useful references for scholars, graduate students, and others in the related fields.
Key words: synthetic method; mixed phosphate; organic phosphorus compound
Linyu Jiao , Hua Yu , Zihui Ning , Zhuo Li . Research Progress in the Preparation of Aryl and Alkyl Mixed Phosphates[J]. Chinese Journal of Organic Chemistry, 2021 , 41(11) : 4180 -4191 . DOI: 10.6023/cjoc202105056
[1] | Kozak, W.; Rachon, J.; Daśko, M.; Demkowicz, S. Asian J. Org. Chem. 2018, 7, 314. |
[2] | Desloges, W.; Neverov, A. A.; Brown, R. S. Inorg. Chem. 2004, 43, 6752. |
[3] | Timperley, C. M.; Casey, K. E.; Notman, S.; Sellers, D. J.; Williams, N. E.; Williams, N. H.; Williams, G. R. J. Fluorine Chem. 2006, 127, 1554. |
[4] | Selikhov, A. N.; Malysheva, Y. B.; Nyuchev, A. V.; Sitnikov, N. S.; Sharonova, E. A.; Shavyrin, A. S.; Combes, S.; Fedorov, A. Y. Russ. Chem. Bull. 2011, 60, 2003. |
[5] | Mills, S. J.; Dozol, H.; Vandeput, F.; Backers, K.; Woodman, T.; Erneux, C.; Spiess, B.; Potter, B. V. L. ChemBioChem 2006, 7, 1696. |
[6] | Silverberg, L. J.; Dillon, J. L.; Vemishetti, P. Tetrahedron Lett. 1996, 37, 771. |
[7] | Jiao, L.-Y.; Zhang, Z.; Yin, X.-M.; Li, Z.; Ma, X.-X. J. Catal. 2019, 379, 39. |
[8] | Shen, J.; Zhang, Y.; Yu, N.; Crump, D.; Li, J.; Su, H.; Letcher, R. J.; Su, G. Environ. Sci. Technol. 2019, 53, 2151. |
[9] | Xu, D. CN 103360606, 2013. |
[10] | Liu, W. CN 109912646, 2021. |
[11] | Liang, R. CN 105833790, 2020. |
[12] | Stubbings, W. A.; Riddell, N.; Chittim, B.; Venier, M. Environ. Sci. Technol. Lett. 2017, 4, 292. |
[13] | Atherton, F. R.; Openshaw, H. T.; Todd, A. R. J. Chem. Soc. 1945, 660. |
[14] | Atherton, F. R.; Todd, A. R. J. Chem. Soc. 1947, 674. |
[15] | Cao, S.; Zhao, Y. Sci. China Chem. 2015, 45, 283. (in Chinese) |
[15] | (曹书霞, 赵玉芬, 中国科学, 化学, 2015, 45, 283.) |
[16] | Le Corre, S. S.; Berchel, M.; Couthon-Gourvès, H.; Haelters, J.-P.; Jaffrès, P.-A. Beilstein J. Org. Chem. 2014, 10, 1166. |
[17] | Chen, X.; Yu, Y.; Qu, L.; Liao, X.; Zhao, Y. Synth. Commun. 2004, 34, 493. |
[18] | Yang, Y.; Qu, C.; Chen, X.; Sun, K.; Qu, L.; Bi, W.; Hu, H.; Li, R.; Jing, C.; Wei, D.; Wei, S.; Sun, Y.; Liu, H.; Zhao, Y. Org. Lett. 2017, 19, 5864. |
[19] | Okamoto, Y.; Kusano, T.; Takamuku, S. Bull. Chem. Soc. Jpn. 1988, 61, 3359. |
[20] | Gupta, A. K.; Acharya, J.; Dubey, D. K.; Kaushik, M. P. Synth. Commun. 2007, 37, 3403. |
[21] | Anitha, T.; Ashalu, K. C.; Sandeep, M.; Mohd, A.; Wencel-Delord, J.; Colobert, F.; Reddy, K. R. Eur. J. Org. Chem. 2019, 7463. |
[22] | Wu, J.; Wang, B. Zhejian Chem. Ind. 2008, 39, 27. (in Chinese) |
[22] | (吴晶, 王博, 浙江化工, 2008, 39, 27.) |
[23] | Dhawan, B.; Redmore, D. J. Org. Chem. 1986, 51, 179. |
[24] | Powles, N.; Atherton, J.; Page, M. I. Org. Biomol. Chem. 2012, 10, 5940. |
[25] | Jones, S.; Selitsianos, D. Org. Lett. 2002, 4, 3671. |
[26] | Jones, S.; Selitsianos, D.; Thompson, K. J.; Toms, S. M. J. Org. Chem. 2003, 68, 5211. |
[27] | Acharya, J.; Shakya, P. D.; Pardasani, D.; Palit, M.; Dubey, D. K.; Gupta, A. K. J. Chem. Res. 2005, 194. |
[28] | Liu, C.-Y.; Pawar, V. D.; Kao, J.-Q.; Chen, C.-T. Adv. Synth. Catal. 2010, 352, 188. |
[29] | Xiao, P.; Zhang, J.; Feng, Y.; Wu, J.; He, J.; Zhang, J. Cellulose 2014, 21, 2369. |
[30] | Weiss-Shtofman, M.; Kramer, M.; Dobrovetsky, R.; Portno, M. Org. Lett. 2020, 22, 3722. |
[31] | Vignola, N.; Dahmen, S.; Enders, D.; Bräse, S. J. Comb. Chem. 2003, 5, 138. |
[32] | Sathe, M.; Gupta, A. K.; Kaushik, M. P. Tetrahedron Lett. 2006, 47, 3107. |
[33] | Gupta, A. K.; Kumar, R.; Dubey, D. K.; Kaushik, M. P. J. Chem. Res. 2007, 328. |
[34] | Kasemsuknimit, A.; Satyender, A.; Chavasiri, W.; Jang, D. O. Bull. Korean Chem. Soc. 2011, 32, 3486. |
[35] | Xiong, B.; Ye, Q.; Feng, X.; Zhu, L.; Chen, T.; Zhou, Y.; Au, C.-T.; Yin, S.-F. Tetrahedron. 2014, 70, 9057. |
[36] | (a) Xiong, B.; Feng, X.; Zhu, L.; Chen, T.; Zhou, Y.; Au, C.-T.; Yin, S.-F. ACS Catal. 2015, 5, 537. |
[36] | (b) Xiong, B.; Zeng, K.; Zhang, S.; Zhou, Y.; Au, C.-T.; Yin, S.-F. Tetrahedron 2015, 71, 9293. |
[37] | Xiong, B.; Cheng, Q.; Hu, C.; Zhang, P.; Liu, Y.; Tang, K. ChemistrySelect 2017, 2, 6891. |
[38] | Xiong, B.; Hu, C.; Li, H.; Zhou, C.; Zhang, P.; Liu, Y.; Tang, K. Tetrahedron Lett. 2017, 58, 2482. |
[39] | Xiong, B.; Hu, C.; Gu, J.; Yang, C.; Zhang, P.; Liu, Y.; Tang, K. ChemistrySelect 2017, 2, 3376. |
[40] | Xiong, B.; Wang, G.; Zhou, C.; Liu, Y.; Li, J.; Zhang, P.; Tang, K. Phosphorus, Sulfur Silicon Relat. Elem. 2018, 193, 239. |
[41] | Bartlett, P. D.; Lonzetta, C. M.; J. Am. Chem. Soc. 1983, 105, 1984. |
[42] | Stephenson, L. M.; McClure, D. E. J. Am. Chem. Soc. 1973, 95, 3074. |
[43] | Oba, M.; Okada, Y.; Nishiyama, K.; Ando, W. Org. Lett. 2009, 11, 1879. |
[44] | Tamilselvi, A.; Mugesh, G. Chem.-Eur. J. 2010, 16, 8878. |
[45] | Kang, B.; Kurutz, J. W.; Youm, K.-T.; Totten, R. K.; Hupp, J. T.; Nguyen, S. T. Chem. Sci. 2012, 3, 1938. |
[46] | Totten, R. K.; Ryan, P.; Kang, B.; Lee, S. J.; Broadbelt, L. J.; Snurr, R. Q.; Hupp, J. T.; Nguyen, S. T. Chem. Commun. 2012, 48, 4178. |
[47] | Katz, M. J.; Mondloch, J. E.; Totten, R. K.; Park, J. K.; Nguyen, S. T.; Farha, O. K.; Hupp, J. T. Angew. Chem. Int. Ed. 2014, 53, 497. |
[48] | Huang, H.; Ash, J.; Kang, J. Y. Org. Lett. 2018, 20, 4938. |
[49] | Nilsson, J.; Kraszewski, A.; Stawinski, J. J. Chem. Soc., erkin Trans. 2001, 2263. |
[50] | Kaboudin, B.; Mostafalu, R. Phosphorus, Sulfur Silicon Relat. Elem. 2012, 187, 776. |
[51] | Keith, J. M. J. Org. Chem. 2006, 71, 9540. |
[52] | Kim, H.; Park, J.; Kim, J. G.; Chang, S. Org. Lett. 2014, 16, 5466. |
[53] | Yamada, K.; Yamashita, M.; Sumiyoshi, T.; Nishimura, K.; Tomioka, K. Org. Lett. 2009, 11, 1631. |
[54] | Haberhauer, G.; Rominger, F. Eur. J. Org. Chem. 2003, 3209. |
[55] | Ying, J.; Gao, Q.; Wu, X.-F. Chem. Asian J. 2020, 15, 1540. |
[56] | Jiao, L.-Y.; Zhang, Z.; Hong, Q.; Ning, Z.-H.; Liu, S.; Sun, M.; Hao, Q.; Xu, L.; Li, Z.; Ma, X.-X. Mol. Catal. 2020, 494, 111120. |
[57] | Matsumoto, S.; Masuda, H.; Iwata, K.; Mitsunobu, O. Tetrahedron Lett. 1973, 14, 1733. |
[58] | Maezaki, N.; Furusawa, A.; Hirose, Y.; Uchida, S.; Tanaka, T. Tetrahedron 2002, 58, 3493. |
[59] | Jones, S.; Smanmoo, C. Tetrahedron Lett. 2004, 45, 1585. |
[60] | Jones, S.; Smanmoo, C. Org. Lett. 2005, 7, 3271. |
[61] | Panmand, D. S.; Tiwari, A. D.; Panda, S. S.; Monbaliu, J.-C. M.; Beagle, L. K.; Asiri, A. M.; Stevens, C. V.; Steel, P. J.; Hall, C. D.; Katritzky, A. R. Tetrahedron Lett. 2014, 55, 5898. |
[62] | Harusawa, S.; Shioiri, T. Tetrahedron. 2016, 72, 8125. |
[63] | Łopusiński, A. Heteroat. Chem. 2004, 15, 395. |
[64] | Guzmán, A.; Diaz, E. Synth. Commun. 1997, 27, 3035. |
/
〈 |
|
〉 |