ARTICLES

Copper-Catalyzed Regioselective C(sp3)—H Sulfonimidization of Aliphatic Cyclic Tertiary Amines

  • Quan Gou ,
  • Qiujian Tan ,
  • Qianqiong Chen ,
  • Jianhong Tan ,
  • Kaimin Wang ,
  • Jianfeng Xie
Expand
  • a School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100
    b Department of Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 400013
    c School of Chemistry and Environment, Yunnan Minzu University, Chongqing 650500
* Corresponding authors. E-mail: ;

Received date: 2021-06-21

  Revised date: 2021-07-17

  Online published: 2021-07-26

Supported by

Chongqing Municipal Education Commission(CXQT20026); Basic Research and Frontier Exploration of Science and Technology Commission of Chongqing(cstc2019jcyj-msxm1275); Fuling District Science and Technology(FLKJ); Fuling District Science and Technology(2019ABB2038); Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202001403)

Abstract

This paper reports a concise and efficient synthesis method, namely copper-catalyzed direct hydrocarbon dehydrogenation coupling of sulfonamides and aliphatic cyclic tertiary amines, to realize the highly regioselective synthesis of (E)-N-sulfonylformamidines. The reaction is accomplished without any corrosive acid or base as an additive. It tolerates a broad scope of substrates, good functional group compatibility, and generates exclusive (E)-stereoselectivity. Moreover, this utility of the protocol is successfully demonstrated in a late-stage functionalization of medicinally active molecules and gram-scale synthesis.

Cite this article

Quan Gou , Qiujian Tan , Qianqiong Chen , Jianhong Tan , Kaimin Wang , Jianfeng Xie . Copper-Catalyzed Regioselective C(sp3)—H Sulfonimidization of Aliphatic Cyclic Tertiary Amines[J]. Chinese Journal of Organic Chemistry, 2021 , 41(11) : 4459 -4466 . DOI: 10.6023/cjoc202106035

References

[1]
(a) Anglada, L.; Marquez, M.; Sacristan, A.; Oritiz, J. Eur. J. Med. Chem. 1988, 23, 97.
[1]
(b) Lee, M. Y.; Kim, M. H.; Kim, J.; Kim, J. K.; Kim, H.; Kim, B. T.; Jeong, I. H.; Chang, S.; Kim, S. H.; Chang, S.-Y. Bioorg. Med. Chem. Lett. 2010, 20, 541.
[1]
(c) Vernier, W.; Chong, W.; Rewolinski, D.; Greasley, S.; Pauly, T.; Shaw, M.; Dinh, D.; Ferre, R. A.; Nukui, S.; Ornelas, M.; Reyner, E. Bioorg. Med. Chem. 2010, 18, 3307.
[1]
(d) Yamasaki, A.; Oda, Y.; Tanizaki, H.; Otsuka, T.; Fukunaga, A.; Nishigori, C.; Moriwaki, S. J. Cutan. Immunol. Allergy 2019, 2, 31.
[1]
(e) Zheng, X.; Liu, Y.; Wan, J. -P. Chin. J. Org. Chem. 2020, 40, 1891. (in Chinese)
[1]
(郑茜茜, 刘云云, 万结平, 有机化学, 2020, 40, 1891.)
[2]
Selected examples, see: (a) Oveston, R. G.; Steendam, R..; Jones, S.; Taylor, R. J. K. Org. Lett. 2012, 14, 1122.
[2]
(b) Yang, L.; Zhao, Y.-L.; Zhao, C.-Y.; Li, H.-H.; Wang, M.-J.; Morris-Natschke, S.; Qian, K.; Lee, K.-H.; Liu, Y.-Q. Med. Chem. Res. 2014, 23, 5043.
[2]
(c) Song, Z.; Chen, H.-L.; Wang, Y.-H.; Goto, M.; Gao, W.-J.; Cheng, P.-L.; Morris-Natschke, S. L.; Liu, Y.-Q.; Zhu, G.-X.; Wang, M.-J.; Lee, K.-H. Bioorg. Med. Chem. Lett. 2015, 25, 2690.
[2]
(d) Zhang, J.; Nan, X.; Yu, H.-T.; Cheng, P.-L.; Zhang, Y.; Liu, Y. Q.; Zhang, S. Y.; Hu, G.-F.; Liu, H.; Chen, A.-L. Eur. J. Med. Chem. 2016, 121, 422.
[2]
(e) Suja, T. D.; Divya, K. V. L.; Naik, L. V.; Kumar, A. R.; Kamal, A. Bioorg. Med. Chem. Lett. 2016, 26, 2072.
[2]
(f) Cornelio, B.; Laronze-Cochard, M.; Ceruso, M.; Ferraroni, M.; Rance, G. A.; Carta, F.; Khlobystov, A. N.; Fontana, A.; Supuran, C. T.; Sapi, J. J. Med. Chem. 2016, 59, 721.
[3]
(a) Brasche, G.; Buchwald, S. L. Angew. Chem. Int. Ed. 2008, 47, 1932.
[3]
(b) Wang, Y.-F.; Zhu, X.; Chiba, S. J. Am. Chem. Soc. 2012, 134, 3679.
[3]
(c) McGowan, M. A.; McAvoy, C. Z.; Buchwald, S. L. Org. Lett. 2012, 14, 3800.
[3]
(d) Wang, G.; Guo, Y.; Wan, J.-P. Chin. J. Org. Chem. 2020, 40, 645. (in Chinese)
[3]
(王国栋, 郭艳辉, 万结平, 有机化学, 2020, 40, 645.)
[4]
(a) Oakley, S. H.; Soria, D. B.; Coles, M. P.; Hitchcock, P. B. Dalton Trans. 2004, 537.
[4]
(b) Andersen, N. K.; Chandak, N.; Brulikova, L.; Kumar, P.; Jensen, M. D. F.; Sharma, P. K.; Nielsen, P. Bioorg. Med. Chem. 2010, 18, 4702.
[5]
Selected reports, see: (a) Tang, X.; Wu, W.; Zeng, W.; Jiang, H. Acc. Chem. Res. 2018, 51, 1092.
[5]
(b) Dhakshinamoorthy, A.; Asiri, A. M.; Garcia, H. ACS Catal. 2019, 9, 1081.
[5]
(c) Zhu, C.; Yue, H.; Jia, J.; Rueping, M. Angew. Chem. Int. Ed. 2021, 60, 17810.
[5]
(d) Dong, K.; Liu, Q.; Wu, L.-Z. Acta Chim. Sinica 2020, 78, 299. (in Chinese)
[5]
(董奎, 刘强, 吴骊珠, 化学学报, 2020, 78, 299.)
[5]
(e) Pei, P.; Zhang, F.; Yi, H.; Lei, A. Acta Chim. Sinica 2017, 75, 15. (in Chinese)
[5]
(裴朋昆, 张凡, 易红, 雷爱文, 化学学报, 2017, 75, 15.)
[5]
(f) Wu, Y.; Shi, B. Chin. J. Org. Chem. 2020, 40, 3517. (in Chinese)
[5]
(吴勇杰, 史炳锋, 有机化学, 2020, 40, 3517.)
[5]
(g) Ming, W.; Liu, X.; Mao, L.; Gu, X.; Ye, Q. Chin. J. Chem. 2021, 39, 1716.
[5]
(h) Xi, L.; Shi, Z. Chin. J. Org. Chem. 2021, 41, 1264. (in Chinese)
[5]
(席龙龙, 史壮志, 有机化学, 2021, 41, 1264.)
[6]
Bae, I.; Han, H.; Chang, S. J. Am. Chem. Soc. 2005, 127, 2038.
[7]
(a) Chow, S. Y.; Odell, L. R. J. Org. Chem. 2017, 82, 2515.
[7]
(b) Chen, J.; Long, W.; Fang, S.; Yang, Y.; Wan, X. Chem. Commun. 2017, 53, 13256.
[7]
(c) Yang, W.; Huang, D.; Zeng, X.; Luo, D.; Wang, X.; Hu, Y. Chem. Commun. 2018, 54, 8222.
[8]
(a) Wang, S.; Wang, Z.; Zheng, X. Chem. Commun. 2009, 7372.
[8]
(b) Xu, X.; Ge, Z.; Cheng, D.; Ma, L.; Lu, C.; Zhang, Q.; Yao, N.; Li, X. Org. Lett. 2010, 12, 897.
[9]
(a) Kim, J.; Lee, S. Y.; Lee, J.; Do, Y.; Chang, S. J. Org. Chem. 2008, 73, 9454.
[9]
(b) Kim, J.; Stahl, S. S. J. Org. Chem. 2015, 80, 2448.
[9]
(c) Ghasemi, Z.; Shojaei, S.; Shahrisa, A. RSC Adv. 2016, 6, 56213.
[10]
Gou, Q.; Liu, Z.; Cao, T.; Tan, X.; Shi, W.; Ran, M.; Cheng, F.; Qin, J. J. Org. Chem. 2020, 85, 2092.
[11]
(a) Boess, E.; Sureshkumar, D.; Sud, A.; Wirtz, C.; Farès, C.; Klussmann, M. J. Am. Chem. Soc. 2011, 133, 8106.
[11]
(b) Chen, J.; Liu, B.; Liu, D.; Liu, S.; Cheng, J. Adv. Synth. Catal. 2012, 354, 2438.
[12]
Huang, B.; Yang, C.; Zhou, J.; Xia, W. Chem. Commun. 2020, 56, 5010.
Outlines

/