REVIEWS

Research Progress of Aryltriazene as Aryl Precursor and Aryl-Azo Precursors in Organic Synthesis

  • Yonghong Zhang ,
  • Chengzong Tang ,
  • Yonghong Liu ,
  • Chenjiang Liu
Expand
  • a State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830046
    b Beijing National Laboratory for Molecular Sciences, Beijing 100871
* Corresponding authors. E-mail: ;

Received date: 2021-02-02

  Revised date: 2021-03-23

  Online published: 2021-04-16

Supported by

Natural Science Foundation of Xinjiang Uyghur Autonomous Region(2017D01C035); National Natural Science Foundation of China(21762041); National Natural Science Foundation of China(21861036)

Abstract

Aryltriazenes have been widely used as a stable aryldiazonium salt surrogate in organic synthesis, in which the compounds show advantages of easy preparation, good stability, multiple reaction sites and mild reaction conditions. In this review, the recent advances in the application of aryltriazenes in organic synthesis as aryl or aryl azo precursors are reviewed.

Cite this article

Yonghong Zhang , Chengzong Tang , Yonghong Liu , Chenjiang Liu . Research Progress of Aryltriazene as Aryl Precursor and Aryl-Azo Precursors in Organic Synthesis[J]. Chinese Journal of Organic Chemistry, 2021 , 41(7) : 2587 -2600 . DOI: 10.6023/cjoc202102014

References

[1]
(a) Rouzer,C. A.; Sabourin, M.; Skinner,T. L.; Thompson,E. J.; Wood,T. O.; Chmurny,G. N.; Klose,J. R.; Roman,J. M.; Smith,R. H.; Michejda,C. J. Chem. Res. Toxicol. 1996, 9,172.
[1]
(b) Gross,M. L.; Blank,D. H.; Welch,W. M. J. Org. Chem. 1993, 58,2104.
[2]
Griess, P. Justus Liebigs Ann. Chem. 1862, 121,258.
[3]
Connors,T. A.; Goddard,P. M.; Merai, K.; Ross,W. C.J.; Wilman,D. E.V. Biochem. Pharmacol. 1976, 25,241.
[4]
Li, Q.; Jin, C.; Petukhov,P. A.; Rukavishnikov,A. V.; Zaikova,T. O.; Phadke, A.; LaMunyon,D. H.; Lee,M. D.; Keana,J. F.W. J. Org. Chem. 2004, 69,1010.
[5]
Romanato, P.; Duttwyler, S.; Linden, A.; Baldridge,K. K.; Siegel,J. S. J. Am. Chem. Soc. 2010, 132,7828.
[6]
Jenny,N. M.; Wang, H.; Neuburger, M.; Fuchs, H.; Chi, L.; Mayor, M. Eur. J. Org. Chem. 2012, 14,2738.
[7]
Romanato, P.; Duttwyler, S.; Linden, A.; Baldridge,K. K.; Siegel,J. S. J. Am. Chem. Soc. 2011, 133,11844.
[8]
Kirk,M. L.; Shultz,D. A.; Stasiw,D. E.; Lewis,G. F.; Wang, G.; Brannen,C. L.; Sommer,R. D.; Boyle,P. D. J. Am. Chem. Soc. 2013, 135,17144.
[9]
Romanato, P.; Duttwyler, S.; Linden, A.; Baldridge,K. K.; Siegel,J. S. J. Phys. Org. Chem. 2014, 27,277.
[10]
Xue, D.; Luo,S. -P.; Zhan,S. -Z. New J. Chem. 2017, 41,8503.
[11]
Kimball,D. B.; Haley,M. M. Angew. Chem. Int. Ed. 2002, 41,3338.
[12]
(a) Zhang, Y.; Cao, D.; Liu, W.; Hu, H.; Zhang, X.; Liu, C. Curr. Org. Chem. 2015, 19,151.
[12]
(b) Botting,N. P.; Challis,B. C. J. Chem. Soc. Chem. Commun. 1989,1585.
[12]
(c) Lazny, R.; Poplawski, J.; Köbberling, J.; Enders, D.; Bräse, S. Synlett 1999,1304.
[13]
(a) Sousa, A.; Santos, F.; Gaspar,M. M.; Calado, S.; Pereira,J. D.; Mendes, E.; Francisco,A. P.; Perry,M. J. Bioorg. Med. Chem. 2017, 25,3900.
[13]
(b) Mouhri,Z. S.; Goodfellow, E.; Kelley,S. P.; Stein,R. S.; Rogers,R. D.; Jean-Claude,B. J. Molecules 2017, 22,1183.
[14]
Wang, Q.; Wang,C. -B.; Pang,F. -Q.; Lu, T.; Yin,H. -Q.; Chen,F. -X. Chin. Chem. Lett. 2017, 28,1784.
[15]
(a) Wang, Q.; Pang, F.; Wang, G.; Huang, J.; Nie, F.; Chen, F. Chem. Commun. 2017, 53,2327.
[15]
(b) Khramov,D. M.; Bielawski,C. W. J. Org. Chem. 2007, 72,9407.
[16]
(a) Sieh,D. H.; Wilbur,D. J.; Michejda,C. J. J. Am. Chem. Soc. 1980, 102,3883.
[16]
(b) Nakhai, A.; Stensland, B.; Svensson,P. H.; Bergman, J. Eur. J. Org. Chem. 2010, 34,6588.
[16]
(c) Suleymanov,A. A.; Scopelliti, R.; Tirani,F. F.; Severin, k. Org. Lett. 2018, 20,3323.
[17]
Kiefer, G.; Riedel, T.; Dyson,P. J.; Scopelliti, R.; Severin, K. Angew. Chem. Int. Ed. 2015, 54,302.
[18]
(a) Tan,J. -F.; Bormann,C. T.; Perrin,F. G.; Chadwick,F. M.; Severin, K.; Cramer, N. J. Am. Chem. Soc. 2019, 141,10372.
[18]
(b) Wezeman, T.; Scopelliti, R.; Tirani,F. F.; Severin, K. Adv. Synth. Catal. 2019, 361,1383.
[19]
(a) Fanghänel, E.; Poleschner, H.; Radelgia, R.; Hänsel, R. J.Prakt. Chem. 1977, 319,813.
[19]
(b) Nguyen,M. T.; Hoesch, L. Helv. Chim. Acta 1986, 69,1627.
[19]
(c) Schmiedekamp, A.; Smith,R. H.; Michejda,C. J. J. Org. Chem. 1988, 53,3433.
[19]
(d) Fanghänel E.; Ortmann W. J. Prakt. Chem. 1989, 331,721.
[19]
(e) Ozment,J. L.; Schmiedekamp,A. M.; Schultz-Merkel,L. A.; Smith,R. H.; Michejda,C. J. J. Am. Chem. Soc. 1991, 113,397.
[19]
(f) Schmiedekamp,A. M.; Topol,I. A.; Burt,S. K.; Razafinjanahary, H.; Chermette, H.; Pfaltzgraff, T.; Michejda,C. J. J. Comput. Chem. 1994, 15,875.
[19]
(g) Rakotondradany, F.; Williams,C. I.; Whitehead,M. A.; Jean-Claude,B. J. J. Mol. Struct.:THEOCHEM 2001, 535,217.
[19]
(h) Kimani,F. W.; Jewett,J. C. Angew. Chem. Int. Ed. 2015, 54,4051.
[20]
Landman,I. R.; Suleymanov,A. A.; Fadaei-Tirani, F.; Scopelliti, R.; Chadwick,F. M.; Severin, K. Dalton Trans. 2020, 49,2317.
[21]
Bhattacharya, S.; Majee, S.; Mukherjee, R.; Sengupta, S. Synth. Commun. 1995, 25,651.
[22]
Sengupta, S.; Sadhukkan,S. K. Tetrahedron Lett. 1998, 39,715.
[23]
Bräse, S.; Schroen, M. Angew. Chem. Int. Ed. 1999, 38,1071.
[24]
Kumar, S.; Pandey,A. K.; Singh, R.; Singh,K. N. Eur. J. Org. Chem. 2018, 43,5942.
[25]
Sutar,S. M.; Savanur,H. M.; Malunavar,S. S.; Prabhala, P.; Kalkhambkar,R. G.; Laali,K. K. Eur. J. Org. Chem. 2019,6088.
[26]
Vishwakarma,R. K.; Kumar, S.; Sharma,A. K.; Singh, R.; Singh,K. N. ChemistrySelect 2019, 4,4064.
[27]
Saeki, T.; Son,E. C.; Tamao, K. Org. Lett. 2004, 6,617.
[28]
Liu,C. -Y.; Gavryushin, A.; Knochel, P. Chem. Asian J. 2007, 2,1020.
[29]
Nan, G.; Ren F.; Luo, M. Beilstein J. Org. Chem. 2010, 6, No.70. doi: 10.3762/bjoc.6.70.
[30]
Nan, G.; Zhu, F.; Wei, Z. Chin. J. Chem. 2011, 29,72.
[31]
Nan, G..; Zhou, J. Chin. J. Org. Chem. 2012, 32,1695 (in Chinese).
[31]
( 南光明, 周均, 有机化学, 2012, 32,1695.)
[32]
Nan,G. M.; Zhou, J.; Yan,W. L. Asian J. Chem. 2013, 25,10322.
[33]
Mao, S.; Chen, Z.; Wang, L.; Khadka, D.; Xin, M.; Li, P.; Zhang, S. J. Org. Chem. 2019, 84,463.
[34]
Sengupta, S.; Sadhukkan,S. K. Org. Synth. 2002, 79,52.
[35]
Saeki, T.; Matsunaga, T.; Son,E. C.; Tamao, K. Adv. Synth. Catal. 2004, 346,1689.
[36]
Zhou, J.; Yang,W. J.; Wang,B. J.; Ren,H. J. Angew. Chem. Int. Ed. 2012, 51,12293.
[37]
Xu, L.; Yang, W.; Zhang, L.; Miao, M.; Yang, Z.; Xu, X.; Ren, H. J. Org. Chem. 2014, 79,9206.
[38]
Liu, C.; Miao, T.; Zhang, L.; Li, P..; Zhang, Y.; Wang, L. Chem. Asian J. 2014, 9,2584.
[39]
Wang, R.; Falck,J. R. Org. Chem. Front. 2014, 1,1029.
[40]
Chaubey,N. R.; Vishwakarma,R. K.; Singh,K. N. ChemistrySelect 2019, 4,8522.
[41]
Zificsak,C. -A.; Hlasta,D. -J. Tetrahedron 2004, 60,8991.
[42]
Dai,W. C.; Wang,Z. X. Org. Chem. Front. 2017, 4,1281.
[43]
Liu, C.; Wang, Z.; Wang, L.; Li, P.; Zhang, Y. Org. Biomol. Chem. 2019, 17,9209.
[44]
Barragan, E.; Poyil,A. N.; Yang,C. -H.; Wang, H.; Bugarin, A. Org. Chem. Front. 2019, 6,152.
[45]
Li, W.; Wu,X. -F. Org. Biomol. Chem. 2015, 13,5090.
[46]
Li, W.; Wu,X. F. Org. Lett. 2015, 17,1910.
[47]
Yin, Z.; Wang, Z.; Wu,X. -F. Eur. J. Org. Chem. 2017,3992.
[48]
Yin, Z.; Wang, Z.; Wu,X. -F. Org. Lett. 2017, 19,6232.
[49]
Chand, S.; Kumar, S.; Singh, R.; Singh,K. N.; ChemistrySelect 2019, 4,718.
[50]
Wippert,N. A.; Jung, N.; Bräse, S. ACS Comb. Sci. 2019, 21,568.
[51]
Barragan, E.; Noonikara-Poyil, A.; Bugarin, A. Asian J. Org. Chem. 2020, 9,593.
[52]
Khazaei, A.; Kazem-Rostami, M.; Moosavi-Zare,A. R.; Bayat, M.; Saednia, S. Synlett 2012, 23,1893.
[53]
Zhang, Y.; Li, Y.; Zhang, X.; Jiang, X. Chem. Commun. 2015, 51,941.
[54]
Pandey,A. K.; Chand, S.; Singh, R.; Kumar, S.; Singh,K. N. ACS Omega 2020, 5,7627.
[55]
Pandey,A. K.; Kumar, S.; Singh, R.; Singh,K. N. Tetrahedron 2018, 74,6704.
[56]
Qi,X. -X.; Jiang,L. -B.; Zhou, C.; Peng,J. -B.; Wu,X. -F. ChemistryOpen 2017, 6,345.
[57]
Kimball,D. B.; Hayes,A. G.; Haley,M. M. Org. Lett. 2000, 2,3825.
[58]
(a) Kimball,D. B.; Herges, R.; Haley,M. M. J. Am. Chem. Soc. 2002, 124,1572.
[58]
(b) Kimball,D. B.; Weakley,T. J.R.; Haley,M. M. J. Org. Chem. 2002, 67,6395.
[59]
Zhu, C.; Yamane, M. Tetrahedron 2011, 67,4933.
[60]
Yang, W.; Yang, Z.; Xu, L.; Zhang, L.; Xu, X.; Miao, M.; Ren, H. Angew. Chem. Int. Ed. 2013, 52,14135.
[61]
Wang, D.; Cui, S. Tetrahedron 2016, 72,2725.
[62]
Cao, D.; Zhang, Y.; Liu, C.; Wang, B; Sun, Y.; Abdukadera, A.; Hu, H.; Liu, Q. Org. Lett. 2016, 18,2000.
[63]
Zhang, Y.; Hu, H.; Liu, C.; Cao, D.; Wang, B.; Sun, Y.; Abdukader, A. Asian J. Org. Chem. 2017, 6,102.
[64]
Zhang, Y.; Liu, Y.; Ma, X.; Ma, X.; Wang, B.; Li, H.; Huang, Y.; Liu, C. Dyes Pigm. 2018, 158,438.
[65]
Liu, Y.; Ma, X.; Wu, G.; Liu, Z.; Yang, X.; Wang, B.; Liu, C.; Zhang, Y.; Huang, Y. New J. Chem. 2019, 43,9255.
[66]
Liu, C.; Lv, J.; Luo,S. Z.; Cheng,J. P. Org. Lett. 2014, 16,5458.
[67]
Sheng, M.; Frurip, D.; Gorman, D. J. Loss Prev. Process Ind. 2015, 38,114.
[68]
Firth,J. D.; Fairlamb,I. J.S. Org. Lett. 2020, 22,7057.
Outlines

/