ARTICLES

One-Pot Synthesis ofN-Furanonyl Sulfonyl Hydrazone Compounds

  • Renhong Chen ,
  • Guizhen Wu ,
  • Kai Yang ,
  • Bin Ye ,
  • Qingfeng Chen ,
  • Zhaoyang Wang
Expand
  • a Guangdong Food and Drug Vocational College, Guangzhou 510520
    b Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510006
    c College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000

Received date: 2021-02-02

  Revised date: 2021-03-22

  Online published: 2021-04-16

Supported by

Natural Science Project of Guangdong Food and Drug Vocational College(2018ZR001); Natural Science Project of Guangdong Food and Drug Vocational College(2014YZ007); Scientific Research Fund of Jiangxi Provincial Education Department(GJJ201504); Scientific Research Project of Gannan Medical University(YB201903); Guangdong Basic and Applied Basic Research Foundation(2021A1515012342); Guangdong Provincial Science and Technology Project(2017A010103016)

Abstract

An efficient approach for the construction of one C—N bond and one C=N bond based on sulfonyl hydrazides, 3,4-dihalo-2(5H)-furanones and carbonyl compounds via the one-pot strategy to provideN-2(5H)-furanonyl sulfonyl hydrazone products with good yields is described. This approach with wide substrate range and good selectivity can be achieved at room temperature by metal-free catalysts. Even for 3,4-dichloro-2(5H)-furanones, the inactive Csp2—Cl type compounds, this green method also gives satisfactory yields. Importantly, its application for a gram-scale preparation of different furanone substrates can be accomplished.

Cite this article

Renhong Chen , Guizhen Wu , Kai Yang , Bin Ye , Qingfeng Chen , Zhaoyang Wang . One-Pot Synthesis ofN-Furanonyl Sulfonyl Hydrazone Compounds[J]. Chinese Journal of Organic Chemistry, 2021 , 41(7) : 2750 -2759 . DOI: 10.6023/cjoc202102015

References

[1]
Acharjya, A.; Longworth-Dunbar, L.; Roeser, J.; Pachfule, P.; Thomas, A. J. Am. Chem. Soc. 2020, 142,14033.
[2]
Chen,J. -J.; Sun,Z. -Z.; Xiao,F. -H.; Deng,G. -J. Green Chem. 2020, 22,6778.
[3]
Cheng,L. -J.; Zhao,S. -L.; Mankad,N. P. Angew. Chem.,Int. Ed. 2021, 60,2094.
[4]
(a) Shaabani, S.; Domling, A. Angew. Chem.,Int. Ed. 2018, 57,16266.
[4]
(b) Wang, X.; Li, G.; Li,X. -J.; Zhu,D. -R.; Shen,R. -W. Org. Chem. Front. 2021, 8,297.
[4]
(c) Gao, G.; Wang, P.; Liu, P.; Zhang,W. -H.; Mo,L. -P.; Zhang,Z. -H. Chin. J. Org. Chem. 2018, 38,846 (in Chinese).
[4]
( 高歌, 王萍, 刘鹏, 张卫红, 默丽萍, 张占辉, 有机化学, 2018, 38,846.)
[5]
(a) Jiang, N.; Fang, Y.; Fang, Y.; Wang,S. -Y.; Ji,S. -J. Org. Chem. Front. 2019, 6,654.
[5]
(b) Zhang, M.; Chen,M. -N.; Zhang,Z. -H. Adv. Synth. Catal. 2019, 361,5182.
[5]
(c) Zhang, M.; Fu,Q. -Y.; Gao, G.; He,H. -Y.; Zhang, Y.; Wu,Y. -S.; Zhang,Z. -H. ACS Sustainable Chem. Eng. 2017, 5,6175.
[6]
Sousa,A. C.; Santos, I.; Piedade,M. F.M.M.; Martins,L. O.; Robalo,M. P. Adv. Synth. Catal. 2020, 362,3380.
[7]
Mendez, Y.; De Armas, G.; Perez, I.; Rojas, T.; Valdes-Tresanco,M. E.; Izquierdo, M.; Alonso del Rivero, M.; Alvarez-Ginarte, Y.; Valiente,P. A.; Soto, C.; de Leon, L.; Vasco,A. V.; Scott,W. L.; Westermann, B.; Gonzalez-Bacerio, J.; Rivera,D. G. Eur. J. Med. Chem. 2019, 163,481.
[8]
(a) Yu, Y.; Lu,W. -F.; Yang,Z. -J.; Wang, N.; Yu,X. -Q. Bioorg. Chem. 2021,107, ?104534.
[8]
(b) Hao, C.; Nie, L.; Han, X.; Zhang, Y.; Sun,K. -L.; Shi, L.; Cui,G. -H.; Meng, W. Chin. J. Org. Chem. 2021, 41,819 (in Chinese).
[8]
( 韩超, 聂磊, 韩晓, 张岩, 孙克磊, 石磊, 崔广华, 孟伟, 有机化学, 2021, 41,819.)
[9]
Ji,H. -Y.; Wang, B.; Pan, L.; Li,Y. -S. Angew. Chem.,Int. Ed. 2018, 57,16888.
[10]
Xiao, X.; Zeng, J.; Fang, J.; Sun,J. -C.; Li, T.; Song,Z. -J.; Cai, L.; Wan, Q. J. Am. Chem. Soc. 2020, 142,5498.
[11]
Pando, O.; Stark, S.; Denkert, A.; Porzel, A.; Preusentanz, R.; Wessjohann,L. A. J. Am. Chem. Soc. 2011, 133,7692.
[12]
Echemendia, R.; de La Torre,A. F.; Monteiro,J. L.; Pila, M.; Correa,A. G.; Westermann, B.; Rivera,D. G.; Paixao,M. W. Angew. Chem.,Int. Ed. 2015, 54,7621.
[13]
Li,X. -W.; Liu,X. -H.; Chen,H. -J.; Wu,W. -Q.; Qi,C. -R.; Jiang,H. F. Angew. Chem.,Int. Ed. 2014, 53,14485.
[14]
Xia, Y.; Wang,J. -B. Chem. Soc. Rev. 2017, 46,2306.
[15]
Zhu, J.; Mao, M.; Ji,H. -J.; Xu,J. -Y.; Wu, L. Org. Lett. 2017, 19,1946.
[16]
Ishikawa, T.; Kimura, M.; Kumoi, T.; Iida, H. ACS Catal. 2017, 7,4986.
[17]
Liu,Z. -Q.; Wu, P.; He, Y.; Yang, T.; Yu,Z. -K. Adv. Synth. Catal. 2018, 360,4381.
[18]
Ishitobi, K.; Muto, K.; Yamaguchi, J. ACS Catal. 2019, 9,11685.
[19]
Xia, Y.; Wang,J. -B. J. Am. Chem. Soc. 2020, 142,10592.
[20]
Kendall,J. D.; Rewcastle,G. W.; Frederick, R.; Mawson, C.; Denny,W. A.; Marshall,E. S.; Baguley,B. C.; Chaussade, C.; Jackson,S. P.; Shepherd,P. R. Bioorg. Med. Chem. 2007, 15,7677.
[21]
Ma, Y.; Sun, G., Chen, D.; Peng, X.; Chen,Y. -L.; Su, Y.; Ji, Y.; Liang, J.; Wang, X.; Chen, L.; Ding, J.; Xiong, B.; Ai, J.; Geng,M. -Y.; Shen, J. J. Med. Chem. 2015, 58,2513.
[22]
Neumann,D. M.; Cammarata, A.; Backes, G.; Palmer,G. E.; Jursic,B. S. Bioorg. Med. Chem. 2014, 22,813.
[23]
Gunduzalp,A. B.; Ozmen,U. O.; Cevrimli,B. S.; Mamas, S.; Cete, S. Med. Chem. Res. 2014, 23,3255.
[24]
James,J. P.; Bhat,K. I.; More,U. A.; Joshi,S. D. Med. Chem. Res. 2018, 27,546.
[25]
Tripathi,A. C.; Upadhyay, S.; Paliwal, S.; Saraf,S. K. Med. Chem. Res. 2018, 27,1485.
[26]
Guo,X. K.; Yang, Q.; Xu, J.; Zhang, L.; Chu,H. X.; Yu, P.; Zhu,Y. Y.; Wei,J. L.; Chen,W. L.; Zhang,Y. Z.; Zhang,X. J.; Sun,H. P.; Tang,Y. Q.; You,Q. D. Bioorg. Med. Chem. 2013, 21,6466.
[27]
Nunes,I. K.D.; de Souza,E. T.; Martins,I. R.R.; Barbosa, G.; de Moraes,M. O.; Medeiros,M. D.; Silva,S. W.D.; Balliano,T. L.; da Silva,B. A.; Silva,P. M.R.; Carvalho,V. D.; Martins,M. A.; Lima,L. M. Eur. J. Med. Chem. 2020, 204,112492.
[28]
Arshad,M. N.; Sheikh,T. A.; Rahman,M. M.; Asiri,A. M.; Marwani,H. M.; Awual,M. R. J. Organomet. Chem. 2017, 827,49.
[29]
Asiri,A. M.; Hussain,M. M.; Arshad,M. N.; Rahman,M. M. New J. Chem. 2018, 42,4465.
[30]
Aslan,H. G.; Karacan, N. Med. Chem. Res. 2013, 22,1330.
[31]
Hassine,B. B.; Kacem, Y. Tetrahedron Lett. 2013, 54,4023.
[32]
(a) Wei,M. -X.; Zhang, J.; Ma,F. -L.; Yu,J. -Y.; Luo, W.; Li,X. -Q. Eur. J. Med. Chem. 2018, 155,165.
[32]
(b) Wang,B. -W.; Liu, Y.; Hao,Z. -F.; Hou,J. -Q.; Li,J. -Y.; Li,S. -T.; Pan,S. -H.; Zeng,M. -H.; Wang,Z. -Y. Chin. J. Org. Chem. 2018, 38,1872 (in Chinese).
[32]
( 王柏文, 刘园, 郝志峰, 侯佳琦, 李健怡, 李舒婷, 潘思慧, 曾铭豪, 汪朝阳, 有机化学, 2018, 38,1872.)
[33]
Shimoi, M.; Maeda, K.; Geib,S. J.; Curran,D. P.; Taniguchi, T. Angew. Chem.,Int. Ed. 2019, 58,6357.
[34]
Trost,B. M.; Gnanamani, E.; Kalnmals,C. A.; Hung,C. I.; Tracy,J. S. J. Am. Chem. Soc. 2019, 141,1489.
[35]
Zhao,M. -N.; Zhang, Y.; Ge, N.; Yu, L.; Wang, S.; Ren,Z. -H.; Guan,Z. -H. Org. Chem. Front. 2020, 7,763.
[36]
Wang, Y.; Chen, B.; He,X. -B.; Gui,J. -H. J. Am. Chem. Soc. 2020, 142,5007.
[37]
Cao, L.; Luo,S. -H.; Wu,H. -Q.; Chen,L. -Q.; Jiang, K.; Hao,Z. -F.; Wang,Z. -Y. Adv. Synth. Catal. 2017, 359,2961.
[38]
Cao, L.; Li,J. -X.; Wu,H. -Q.; Jiang, K.; Hao,Z. -F.; Luo,S. -H.; Wang,Z. -Y. ACS Sustainable Chem. Eng. 2018, 6,4141.
[39]
Wu,H. -Q.; Luo,S. -H.; Cao, L.; Shi,H. -N.; Wang,B. -W.; Wang,Z. -Y. Asian J. Org. Chem. 2018, 7,2479.
[40]
Yang, K.; Gao,J. -J.; Luo,S. -H.; Wu,H. -Q.; Pang,C. -M.; Wang,B. -W.; Chen,X. -Y.; Wang,Z. -Y. RSC Adv. 2019, 9,19917.
[41]
Wu,H. -Q.; Yang, K.; Luo,S. -H.; Wu,X. -Y.; Wang, N.; Chen,S. -H.; Wang,Z. -Y. Eur. J. Org. Chem. 2019, 28,4572.
[42]
Wu,H. -Q.; Yang, K.; Chen,X. -Y.; Mani, A.; Wang, N.; Chen,S. -H.; Wang,Z. -Y. Green Chem. 2019, 21,3782.
[43]
Wu,Y. -C.; Luo,S. -H.; Mei,W. -J.; Cao, L.; Wu,H. -Q.; Wang,Z. -Y. Eur. J. Med. Chem. 2017, 139,84.
[44]
Wu,Y. -C.; Cao, L.; Mei,W. -J.; Wu,H. -Q.; Luo,S. -H.; Zhan, H.-Y, Wang,Z. -Y. Chem. Biol. Drug Des. 2018, 92,1232.
[45]
Luo,S. -H.; Yang, K.; Lin,J. -Y.; Gao,J. -J.; Wu,X. -Y.; Wang,Z. -Y. Org. Biomol. Chem. 2019, 17,5138.
[46]
Namba, K.; Shoji, I.; Nishizawa, M.; Tanino, K. Org. Lett. 2009, 11,4970.
[47]
Zeng,L. -W.; Lai,Z. -C.; Cui,S. -L. J. Org. Chem. 2018, 83,14834.
Outlines

/