ARTICLES

UV-Light-Initiated Construction of Indenones through Cyclization of Aryl Aldehydes or Aryl Ketones with Alkynes Avoiding Photocatalyst

  • Yujuan Xiao ,
  • Yang Yang ,
  • Fan Zhang ,
  • Yadong Feng ,
  • Xiuling Cui
Expand
  • a College of Environment and Public Health, Institute of Analytical Technology and Smart Instruments, Xiamen Huaxia University, Xiamen 361024
    b Engineering Research Center of Molecular Medicine, Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021
* Corresponding authors. E-mail: ;

Received date: 2021-07-07

  Revised date: 2021-07-29

  Online published: 2021-08-10

Supported by

Fujian Education and Scientific Research Project for Young and Middle-aged Teachers(JAT190990)

Abstract

The first UV-light-initiated cyclization of aryl aldehydes or aryl ketones with alkynes has been developed for the preparation of indenones. This reaction could proceed smoothly under UV-light with O2 as an oxidant and photocatalyst-free condition, which features high efficiency, high atom economy, easily available starting materials, environmental friendliness, and tolerance to broad functional groups.

Cite this article

Yujuan Xiao , Yang Yang , Fan Zhang , Yadong Feng , Xiuling Cui . UV-Light-Initiated Construction of Indenones through Cyclization of Aryl Aldehydes or Aryl Ketones with Alkynes Avoiding Photocatalyst[J]. Chinese Journal of Organic Chemistry, 2021 , 41(12) : 4808 -4814 . DOI: 10.6023/cjoc202107021

References

[1]
(a) Huebner, C. F.; Donoghue, E. M.; Plummer, A. J.; Furness, D. A. J. Med. Chem. 1966, 9, 830.
[1]
(b) Jeffrey, J. L.; Sarpong, R. Org. Lett. 2009, 11, 5450.
[1]
(c) Barbera, J.; Rakitin, O. A.; Ros, M. B.; Torroba, T. Angew. Chem., Int. Ed. 1998, 37, 296.
[1]
(d) Morinaka, K.; Ubukata, T.; Yokoyama, Y. Org. Lett. 2009, 11, 3890.
[1]
(e) Anstead, G. M.; Wilson, S. R.; Katzenellenbogen, J. A. J. Med. Chem. 1989, 32, 2163.
[1]
(f) Froimowitz, M.; Wu, K. M.; Moussa, A.; Haidar, R. M.; Jurayj, J.; George, C.; Gardner, E. L. J. Med. Chem. 2000, 43, 4981.
[1]
(g) Gao, K.; Yoshikai, N. Chem. Commun. 2012, 48, 4305.
[1]
(h) Kuninobu, Y.; Matsuki, T.; Takai, K. Org. Lett. 2012, 12, 2948.
[1]
(i) Vasilyev, A. V.; Walspurger, S.; Pale, P.; Sommer, J. Tetrahedron Lett. 2004, 45, 3379.
[1]
(j) Sheng, Y.; You, Y.; Cao, Z.; Liu, L.; Wu, H. C. Analyst 2018, 143, 2411.
[2]
(a) Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174.
[2]
(b) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147.
[2]
(c) Giri, R.; Shi, B.; Engle, K. M.; Maugel, N.; Yu, J. Chem. Soc. Rev. 2009, 38, 3242.
[2]
(d) McMurray, L.; O'Hara, F.; Gaunt, M. J. Chem. Soc. Rev. 2011, 40, 1885.
[2]
(e) Ylijoki, K. E. O.; Stryker, J. M. Chem. Rev. 2013, 113, 2244.
[2]
(f) Wang, Z.; Xie, P.; Xia, X. Chin. Chem. Lett. 2018, 29, 47.
[2]
(g) Zhang, Y.; Sun, K.; Lv, K.; Chen, X.; Qu, L.; Yu, B. Chin. Chem. Lett. 2019, 30, 1361.
[2]
(h) Suo, J.; Du, J.; Jiang, Y.; Chen, D.; Ding, C.; Hou, X. Chin. Chem. Lett. 2019, 30, 1512.
[2]
(i) Pan, Y.; Chen, G.; Shen, C.; He, W.; Ye, L. Org. Chem. Front. 2016, 3, 491.
[2]
(j) Li, W.; Yin, G.; Huang, L.; Xiao, Y.; Fu, Z.; Xin, L.; Liu, F.; Li, Z.; He, W. Green Chem. 2016, 18, 4879.
[2]
(k) Gao, Q.; Hao, W.; Liu, F.; Tu, S.; Wang, S.; Li, G.; Jiang, B. Chem. Commun. 2016, 52, 900.
[2]
(l) Zhou, P.; Wang, J.; Zhang, T.; Li, G.; Hao, W.; Tu, S.; Jiang, B. Chem. Commun. 2018, 54, 164.
[2]
(m) Zhu, S.; Zhou, J.; Wu, Q.; Hao, W.; Tu, S.; Jiang, B. Org. Chem. Front. 2020, 7, 2975.
[2]
(n) Tian, S.; Luo, T.; Zhu, Y.; Wang, J. Chin. Chem. Lett. 2020, 31, 3072.
[2]
(o) Butenschön, H. Angew. Chem., Int. Ed. 2008, 47, 5287.
[2]
(p) Harmata, M. Chem. Commun. 2010, 46, 8886.
[2]
(q) Lv, N.; Chen, Z.; Liu, Y.; Liu, Z.; Zhang, Y. Org. Lett. 2017, 19, 2588.
[2]
(r) Yu, W.; Zhang, W.; Liu, Z.; Zhang, Y. Chem. Commun. 2016, 52, 6837.
[3]
Chen, S.; Yu, J.; Jiang, Y.; Chen, F.; Cheng, J. Org. Lett. 2013, 15, 4754.
[4]
Banerji, B.; Majumder, L.; Adhikary, S. ChemistrySelect 2018, 3, 1381.
[5]
Feng, Y.; Zhang, H.; Yu, Y.; Yang, L.; Cui, X. Eur. J. Org. Chem. 2019, 16, 2740.
[6]
(a) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
[6]
(b) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075.
[6]
(c) Ravelli, D.; Fagnoni, M.; Albini, A. Chem. Soc. Rev. 2013, 42, 97.
[7]
Nagib, D. A.; MacMillan, D. W. C. Nature 2011, 480, 224.
[8]
Kalyani, D.; McMurtrey, K. B.; Neufeldt, S. R.; Sanford, M. J. Am. Chem. Soc. 2011, 133, 18566.
[9]
(a) Tobisu, M.; Furukawa, T.; Chatani, N. Chem. Lett. 2013, 42, 1203.
[9]
(b) Gomes, F.; Narbonne, V.; Blanchard, F.; Maestri, G. Org. Chem. Front. 2015, 2, 464.
[9]
(c) Liang, L.; Xie, M.; Wang, H.; Niu, H.; Qu, G.; Guo, H. J. Org. Chem. 2017, 82, 966.
[9]
(d) Xue, D.; Jia, Z.; Zhao, C.; Zhang, Y.; Wang, C.; Xiao, J. Chem.- Eur. J. 2014, 20, 2960.
[9]
(e) Zhang, J.; Chen, J.; Zhang, X.; Lei, X. J. Org. Chem. 2014, 79, 10682.
[9]
(f) Xu, H.; Jiang, Z. Chin. J. Org. Chem. 2020, 40, 3483. (in Chinese)
[9]
( 许荷欢, 江智勇, 有机化学, 2020, 40, 3483.)
[9]
(g) Jin, J.-K.; Xia, H.-M.; Zhang, F.-L.; Wang, Y.-F. Chin. J. Org. Chem. 2020, 40, 2185. (in Chinese)
[9]
( 靳继康, 夏慧敏, 张凤莲, 汪义丰, 有机化学, 2020, 40, 2185.)
[10]
Hari, D. P.; Schroll, P.; Ko?nig, B. J. Am. Chem. Soc. 2012, 134, 2958.
[11]
(a) Huang, L.; Zhao, J. RSC Adv. 2013, 3, 23377.
[11]
(b) Marzo, L.; Ghosh, I.; Esteban, F.; Konig, B. ACS Catal. 2016, 6, 6780.
[11]
(c) Feng, Y; Bu, X.; Huang, B.; Rong, C.; Dai, J.; Xu, J.; Xu, H. Tetrahedron Lett. 2017, 58, 1939.
[11]
(d) Kojima, M.; Oisaki, K. Kanai, M. Chem. Commun. 2015, 51, 9718.
[11]
(e) Poelma, S. O.; Burnett, G. L.; Discekici, E. H.; Mattson, K. M.; Treat, N. J.; Luo, Y.; Hudson, Z. M.; Shankel, S. L.; Clark, P. G.; Kramer, J. W.; Hawker, C. J.; Read de Alaniz, J. J. Org. Chem. 2016, 81, 7155.
[11]
(f) Cui, L.; Matusaki, Y.; Tada, N.; Miura, T.; Uno, B.; Itoh, A. Adv. Synth. Catal. 2013, 355, 2203.
[12]
Vitale, A.; Bongiovanni, R.; Ameduri, B. Chem. Rev. 2015, 115, 8835.
[13]
(a) Feng, Y.; Zhang, Z.; Fu, Q.; Yao, Q.; Huang, H.; Shen, J.; Cui, X. Chin. Chem. Lett. 2020, 31, 58.
[13]
(b) Feng, Y.; Liu, Y.; Fu, Q.; Zou, Z.; Shen, J.; Cui, X. Chin. Chem. Lett. 2020, 31, 733.
[13]
(c) Feng, Y.; Wu, Z.; Chen, T.; Fu, Q.; You, Q.; Shen, J.; Cui, X. Chin. Chem. Lett. 2020, 31, 3263.
[13]
(d) Li, T.; Yang, Z.; Song, Z.; Chauvin, R.; Cui, X. Org. Lett. 2020, 22, 4078.
[13]
(e) Liu, Y.; Yang, Z.; Chauvin, R.; Fu, W.; Yao, Z.; Wang, L.; Cui, X. Org. Lett. 2020, 22, 5140.
[13]
(f) Yao, Z.; Lin, X.; Chauvin, R.; Wang, L.; Gras, E.; Cui, X. Chin. Chem. Lett. 2020, 31, 3250.
[13]
(g) Song, Z.; Yang, Z.; Wang, P.; Shi, Z.; Li, T.; Cui, X. Org. Lett. 2020, 22, 6272.
[13]
(h) Wu, Y.; Pi, C.; Cui, X.; Wu, Y. Org. Lett. 2020, 22, 361.
[13]
(i) Ren, J.; Yan, X.; Cui, X.; Pi, C.; Wu, Y.; Cui, X. Green Chem. 2020, 22, 265.
[13]
(j) He, Y.; Pi, C.; Wu, Y.; Cui, X. Chin. Chem. Lett. 2020, 31, 396.
[13]
(k) Huang, Y.; Pi, C.; Cui, X.; Wu, Y. Adv. Synth. Catal. 2020, 362, 1385.
[13]
(l) Wan, T.; Pi, C.; Wu, Y.; Cui, X. Org. Lett. 2020, 22, 6484.
[13]
(m) Yu, H.; Pi, C.; Wang, Y.; Cui, X.; Wu, Y. Chin. J. Org. Chem. 2018, 38, 124. (in Chinese)
[13]
( 余海洋, 皮超, 王勇, 崔秀灵, 吴养洁, 有机化学, 2018, 38, 124.)
[13]
(n) Shi, Z.-J.; Wang, L.-H.; Cui, X. Chin. J. Org. Chem. 2019, 39, 1596. (in Chinese)
[13]
( 施兆江, 王连会, 崔秀灵, 有机化学, 2019, 39, 1596.)
[14]
(a) Li, Z.; Li, D.; Wang, G. J. Org. Chem. 2013, 78, 10414.
[14]
(b) Li, H.; Li, P.; Wang, L. Chem. Commun. 2013, 49, 9170.
[14]
(c) Li, H.; Li, P.; Wang, L. Chem.-Eur. J. 2013, 19, 14432.
[14]
(d) Wang, G.; Shang, R.; Cheng, W.; Fu, Y. Org. Lett. 2015, 17, 4830.
[14]
(e) Ji, W.; Tan, H.; Wang, M.; Li, P.; Wang, L. Chem. Commun. 2016, 52, 1462.
[14]
(f) Li, C.; Xu, G.; Xu, P. Org. Lett. 2017, 19, 512.
[14]
(g) Xu, S.; Chen, J.; Liu, D.; Bao, Y.; Liang, Y.; Xu, P. Org. Chem. Front. 2017, 4, 1331.
[14]
(h) Liu, Y.; Wang, Q.; Zhou, C.; Xiong, B.; Zhang, P.; Kang, S.; Yang, C.; Tang, K. Tetrahedron Lett. 2018, 59, 2038.
[15]
(a) Sharma, U. K.; Gemoets, H. P. L.; Schroder, F.; Noel, T.; Eycken, E. V. ACS. Catal. 2017, 7, 3818.
[15]
(b) Zhang, L.; Zhang, G.; Li, Y.; Wang, S.; Lei, A. Chem. Commun. 2018, 54, 5744.
[15]
(c) Chatgilialoglu, C.; Crich, D.; Komatsu, M.; Ryu, I. Chem. Rev. 1999, 99, 1991.
[15]
(d) Yu, X.; Chen, J.; Chen, H.; Xiao, W.; Chen, J. Org. Lett. 2020, 22, 2333.
[15]
(e) Zhao, Q.; Zhou, X.; Xu, S.; Wu, Y.; Xiao, W.; Chen, J. Org. Lett. 2020, 22, 2470.
[15]
(f) Liang, D.; Tan, L.; Xiao, W.; Chen, J. Chem. Commun. 2020, 56, 3777.
[15]
(g) Leifert, D.; Daniliuc, C. G.; Studer, A. Org. Lett. 2013, 15, 6286.
[15]
(h) Wertz, S.; Leifert, D.; Studer, A. Org. Lett. 2013, 15, 928.
[16]
(a) Yi, R.; He, W. Chin. J. Org. Chem. 2021, 41, 1267. (in Chinese)
[16]
( 易荣楠, 何卫民, 有机化学, 2021, 41, 1267.)
[16]
(b) Liu, R.; Yang, M.; Qiu, G.; Zhang, L.; Wang, Y.; Luo, J. Chin. J. Org. Chem. 2020, 40, 2071. (in Chinese)
[16]
( 刘仁志, 杨民, 邱观音生, 张莲鹏, 王玉超, 罗劲, 有机化学, 2020, 40, 2071.)
[16]
(c) Peng, S.; Lin, Y.; He, W. Chin. J. Org. Chem. 2020, 40, 541. (in Chinese)
[16]
( 彭莎, 林英武, 何卫民, 有机化学, 2020, 40, 541.)
[16]
(d) Yuan, X.; Yang, G.; Yu, B. Chin. J. Org. Chem. 2020, 40, 3620. (in Chinese)
[16]
( 袁晓亚, 杨国平, 於兵, 有机化学, 2020, 40, 3620.)
[16]
(e) Wu, Y.; Chen, J.; Ning, J.; Jiang, X.; Deng, J.; Deng, Y.; Xu, R.; He, W. Green Chem. 2021, 23, 3950.
[16]
(f) Jiang, J.; Xiao, F.; He, W.; Wang, L. Chin. Chem. Lett. 2021, 32, 1637.
[16]
(g) He, W.; Gao, L.; Chen, X.; Wu, Z.; Huang, Y.; Cao, Z.; Xu, X.; He, W. Chin. Chem. Lett. 2020, 31, 1895.
[17]
Tsukamoto, H.; Kondo, Y. Org. Lett. 2007, 21, 4227.
[18]
Feng, Y.; Zhang, H.; Yu, Y.; Yang, L.; Cui, X. Eur. J. Org. Chem. 2019, 16, 2740.
[19]
Zhang, J.; Yang, F.; Wu, Y. Appl. Organomet. Chem. 2011, 25, 675.
[20]
Jafarpour, F.; Azizzade, M.; Golpazir-Sorkheh, Y.; Navid, H.; Rajai- Daryasarei, S. J. Org. Chem. 2020, 85, 8287.
[21]
Curtin, D. Y.; Johnson, H. W., Jr.; Steiner, E. G. J. Am. Chem. Soc. 1955, 77, 4566.
Outlines

/