Chinese Journal of Organic Chemistry >
ICl-Catalyzed Csp2—H Selenation of Aminocoumarin Derivatives
Received date: 2021-06-29
Revised date: 2021-07-30
Online published: 2021-08-19
Supported by
Basic Frontier Research Project of Chongqing(Cstc2018jcyjAX0051); Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202001415)
Owing to their special biological activities, organic selenium heterocyclic compounds have widely applications in organic chemistry and drug synthesis. A series of methods for the synthesis of organoselenide heterocyclic compounds have been reported, however, shortcomings still exist. In this paper, an effective method for the synthesis of 3-aryl(alkyl)selenylcoumarin derivatives via the ICl-catalyzed selenation of coumarins with diaryl(alkyl)diselenide at room temperature is reported. In addition, this method is also suitable for the construction of Csp2—Se bonds of other heterocyclic compounds. Compared to previous methods, this method has the advantages of mild conditions and wide functional groups tolerance, providing a general pathway to organoselenide heterocyclic compounds.
Shuhua He , Hang Zhang , Hongyu Wu , Shiyu Zhou , Yao Xiao , Xianhui You , Jinyang Chen . ICl-Catalyzed Csp2—H Selenation of Aminocoumarin Derivatives[J]. Chinese Journal of Organic Chemistry, 2021 , 41(11) : 4378 -4383 . DOI: 10.6023/cjoc202106055
[1] | Chen, Z.; Bi, J.; Su, W. Chin. J. Chem. 2013, 31, 507. |
[2] | Zhang, J.; Tan, Y.; Li, G.; Chen, L.; Nie, M.; Wang, Z.; Ji, H. Molecules 2021, 26, 786. |
[3] | Annunziata, F.; Pinna, C.; Dallavalle, S.; Tamborini, L.; Pinto, A. Int. J. Mol. Sci. 2020, 21, 4618. |
[4] | Goud, N. S.; Kumar, P.; Bharath, R. D. Mini Rev. Med. Chem. 2020, 20, 1754. |
[5] | Liu, X.-H.; Liu, H.-F.; Chen, J.; Yang, Y.; Song, B.-A.; Bai, L.-S.; Liu, J.-X.; Zhu, H.-L.; Qi, X.-B. Bioorg. Med. Chem. Lett. 2010, 20, 5705. |
[6] | Zhang, Z.; Bai, Z.-W.; Ling, Y. Med. Chem. 2018, 27, 1198. |
[7] | Luo, G.; MosesMuyaba, W.; Tang, Z.; Zhao, R.; Xu, Q.; You, Q.; Xiang, H. Bioorg. Med. Chem. 2017, 27, 867. |
[8] | Aman, K. K. B.; Pushap, R.; Pooja, C.; Sanjay, K. M.; Savita, C.; Narinder, S.; Navneet, K. New J. Chem. 2020, 44, 3341. |
[9] | Chen, J.; Yu, Y.; Li, S.; Ding, W. Molecules 2016, 21, 1501. |
[10] | Hu, X.-L.; Xu, Z.; Liu, M.-L.; Feng, L.-S.; Zhang, G.-D. Curr. Top. Med. Chem. 2017, 17, 3219. |
[11] | Wu, J.-S.; Liu, W.-M.; Zhuang, X.-Q.; Wang, F.; Wang, P.-F.; Tao, S.-L.; Zhang, X.-H.; Wu, S.-K.; Lee, S.-T. Org. Lett. 2007, 9, 33. |
[12] | Bugaenko, D. I.; Karchava, A. V.; Yunusova, Z. A.; Yurovskaya, M. A. Chem. Heterocycl. Com. 2019, 55, 483. |
[13] | Styliani Voutsadaki, G. K.; Tsikalas, E. K.; George E, F.; Haralambos, E. K. Chem. Commun. 2010, 46, 3292. |
[14] | Zhang, G.; Zheng, H.; Guo, M.; Du, L.; Liu, G.; Wang, P. App. Surf. Sci. 2016, 367, 167. |
[15] | Katerinopoulos, H. E. Curr. Pharm. Des. 2004, 10, 3835. |
[16] | Li, H.; Cai, L.; Li, J.; Hu, Y.; Zhou, P.; Zhang, J. Dyes Pigm. 2011, 91, 309. |
[17] | Maja, M.; Melita, L.; Marija, K. Curr. Org. Chem. 2020, 24, 4. |
[18] | Anamika, D. U.; Ekta, N. J.; Shivali, S. Curr. Org. Chem. 2018, 22, 2509. |
[19] | Yu, N.; Yuki, S.; Takamitsu, H.; Suguru, Y. Org. Lett. 2020, 22, 8505. |
[20] | Shi, L.; Li, Z.-Q; Cui, X.-X; Zhu, T.; Pang, X.-J; Li, L.-H; Luo, D.-F; Liu, F.-F; Zhao, B.-Y; Long, Y.; Zhang, S.-Y. Chin. J. Org. Chem. 2020, 40, 1598. (in Chinese) |
[20] | (时蕾, 李子秋, 崔鑫鑫, 朱挺, 庞晓静, 李龙辉, 罗德福, 刘方芳, 赵冰玉, 龙跃, 张赛扬, 有机化学, 2020, 40, 1598.) |
[21] | Vieira, B. M.; Thurow, S.; Costa, M. D.; Casaril, A. M.; Domingues, M.; Schumacher, R. F.; Perin, G.; Alves, D.; Savegnago, L.; Lenardao, E. J. Asian J. Org. Chem. 2020, 56, 179. |
[22] | Chen, Z.; Lai, H.; Hou, L.; Chen, T. Chem. Commun. 2020, 56, 179. |
[23] | Chen, J.-Y.; Hu, L.; Wang, H.-Y.; Tan, H.-H. 有机化学, 2020, 39, 2048. (in Chinese) |
[23] | (陈锦杨, 胡丽, 汪海英, 谭红绘, 有机化学, 2019, 39, 2048.) |
[24] | Doering, M.; Ba, L. A.; Lilienthal, N.; Nicco, C.; Scherer, C.; Abbas, M.; Zada, A. A. P.; Coriat, R.; Burkholz, T.; Wessjohann, L.; Diederich, M.; Batteux, F.; Herling, M.; Jacob, C. J. Med. Chem. 2010, 53, 6954. |
[25] | Banerjee, B.; Koketsu, M. C. Chem. Rev. 2017, 339, 104. |
[26] | Taniguchi, N.; Onami, T. J. Org. Chem. 2004, 69, 915. |
[27] | Yang, D.; Li, G.; Xing, C.; Cui, W.; Li, K.; Wei, W. Org. Chem. Front. 2018, 5, 2974. |
[28] | Tang, S.; Zeng, L.; Lei, A. J. Am. Chem. Soc. 2018, 140, 13128. |
[29] | Sun, L.; Zhang, X.; Wang, C.; Teng, H.; Ma, J.; Hao, Z.; Jiang, C. Green Chem. 2019, 21, 2732. |
[30] | Wu, Y.; Chen, J.-Y.; Ning, J.; Jiang, X.; Deng, J.; Deng, Y.; Xu, R.; He, W.-M. Green Chem. 2021, 23, 3950. |
[31] | Chen, J.-Y.; Zhong, C.-T.; Gui, Q.-W.; Zhou, Y.-M.; Fang, Y.-Y.; Liu, K.-J.; Lin, Y.-W.; Cao, Z.; He, W.-M. Chin. Chem. Lett. 2021, 32, 475. |
[32] | Zhang, X.; Yang, C.; Gao, H.; Wang, L.; Guo, L.; Xia, W. Org. Lett. 2021, 23, 347. |
[33] | Wu, Y.; Chen, J.-Y.; Liao, H.-R.; Shu, X.-R.; Duan, L.-L.; Yang, X.-F.; He, W.-M. Green Synth. Catal. 2021, 2, 233. |
[34] | Li, X.-D.; Gao, Y.-T.; Sun, Y.-J.; Jin, X.-Y.; Wang, D.; Liu, L.; Cheng, L. Org. Lett. 2019, 21, 6643. |
[35] | Chen, W.-Y.; Lu, J. Synlett 2005, 1337. |
[36] | Kidwai, M.; Bansal, V.; Mothsra, P.; Saxena, S.; Somvanshi, R. K.; Dey, S.; Singh, T. P. J. Mol. Catal. A: Chem. 2007, 268, 76. |
[37] | Weng, Y.; Zhou, H.; Sun, C.; Xie, Y.; Su, W. J. Org. Chem. 2017, 82, 9047. |
[38] | Kommula, D.; Li, Q.; Ning, S.; Liu, W.; Wang, Q.; Zhao, Z.-K. Synth. Commun. 2020, 50, 1026. |
[39] | Ghosh, P.; Nandi, A. K.; Chhetri, G.; Das, S. J. Org. Chem. 2018, 83, 12411. |
[40] | Noikham, M.; Yotphan, S. Eur. J. Org. Chem. 2019, 16, 2759. |
[41] | Zhu, Y.-Q.; He, J.-L.; Niu, Y.-X.; Kang, H.-Y.; Han, T.-F.; Li, H.-Y. J. Org. Chem. 2018, 83, 9958. |
[42] | Zhang, X.; Wang, C.; Jiang, H.; Sun, L. Chem. Commun. 2018, 54, 8781. |
/
〈 |
|
〉 |