ARTICLES

1,4-Diazabicyclo[2.2.2]octane-Promoted Addition Reaction of Tricarbonyl Monohydrates with Active Alkynes via Consecutive C—C/C—O Cleavage

  • Jinfeng Zhang ,
  • Ruyi Ye ,
  • Ziyang Li ,
  • Lingguo Meng
Expand
  • School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000
* Corresponding author. E-mail:

Received date: 2021-04-08

  Revised date: 2021-06-01

  Online published: 2021-08-19

Supported by

Natural Science Foundation of Educational Committee of Anhui Province(KJ2020A0045); Natural Science Foundation of Educational Committee of Anhui Province(KJ2020B01)

Abstract

A novel addition reaction of vicinal tricarbonyl monohydrates with active alkynes proceeded via rapid consecutive C—C/C—O cleavage processes under metal-free and mild reaction conditions, and the transformation was completed within only 1 min. Diverse tricarbonyl monohydrates could react with active alkynes to produce carboxylate esters via these transformations in the presence of 1,4-diazabicyclo[2.2.2]octane (DABCO).

Cite this article

Jinfeng Zhang , Ruyi Ye , Ziyang Li , Lingguo Meng . 1,4-Diazabicyclo[2.2.2]octane-Promoted Addition Reaction of Tricarbonyl Monohydrates with Active Alkynes via Consecutive C—C/C—O Cleavage[J]. Chinese Journal of Organic Chemistry, 2021 , 41(11) : 4384 -4390 . DOI: 10.6023/cjoc202104016

References

[1]
Fuji, K. Bond-Cleavage Reactions with Hard Acid and Soft Nucleophile Systems, Advances in Chemistry, ACS Symposium Series, American Chemical Society, Washington, DC, 1987, Vol. 215, p. 219.
[2]
For selected reviews, see: (a) van der Boom, M. E.; Milstein, D. Chem. Rev. 2003, 103, 1759.
[2]
(b) Tobisu, M.; Chatani, N. Chem. Soc. Rev. 2008, 37, 300.
[3]
For selected reviews, see: (a) Lu, H.; Yu, T.-Y.; Xu, P.-F.; Wei, H. Chem. Rev. 2021, 121, 365.
[3]
(b) Lutz, M. D. R.; Morandi, B. Chem. Rev. 2021, 121, 300.
[3]
(c) McDonald, T. R.; Mills, R. M.; West, M. S.; Rousseaux, S. A. L. Chem. Rev. 2021, 121, 3.
[3]
(d) Jun, C.-H. Chem. Soc. Rev. 2004, 33, 610.
[3]
(e) Wu, J.; Zhu, J.; Li, H.; Wu, C.; Shen, R.; Yu, L. Chin. J. Org. Chem. 2019, 39, 573. (in Chinese)
[3]
(吴锦雯, 朱佳雯, 李慧, 吴春雷, 沈润溥, 余乐茂, 有机化学, 2019, 39, 573.)
[4]
For selected examples, see: (a) Suginome, M..; Matsuda, T.; Ito,, Y. J. Am. Chem. Soc. 2000, 122, 11015.
[4]
(b) Youn, S. W.; Kim, B. S.; Jagdale, A. R. J. Am. Chem. Soc. 2012, 134, 11308.
[4]
(c) Zhou, M.-B.; Luo, M.-J.; Hu, M.; Li, J.-H. Chin. J. Chem. 2020, 38, 553.
[5]
For selected examples, see: (a) Onodera, S.; Ishikawa, S.; Kochi, T.; Fakiuchi, F. J. Am. Chem. Soc. 2018, 140, 9788.
[5]
(b) Chatani, N.; Le, Y.; Kakiuchi, F.; Murai, S. J. Am. Chem. Soc. 1999, 121, 8645.
[5]
(c) Cheng, C.-W.; Kuo, Y.-C.; Chang, S.-H.; Lin, Y.-C.; Liu, Y.-H.; Wang, Y. J. Am. Chem. Soc. 2007, 129, 14974.
[6]
For selected examples, see: (a) Brendel, M.; Sakhare, P. R.; Dahiya, G.; Subramanian, P.; Kaliappan, K. P. J. Org. Chem. 2020, 85, 8102.
[6]
(b) Fan, W.; Yang, Y.; Lei, J.; Jiang, Q.; Zhou, W. J. Org. Chem. 2015, 80, 8782.
[6]
(c) Zhu, Y.; Yan, H.; Lu, L.; Liu, D.; Rong, G.; Mao, J. J. Org. Chem. 2013, 78, 9898.
[6]
(d) Zhang, L.; Bi, X.; Guan, X.; Li, X.; Liu, Q. Angew. Chem., nt. Ed. 2013, 52, 11303.
[7]
For selected examples, see: (a) Wang, T.; Jiao, N. J. Am. Chem. Soc. 2013, 135, 11692.
[7]
(b) Liang, D.; He, Y.; Liu, L.; Zhu, Q. Org. Lett. 2013, 15, 3476.
[8]
For selected examples, see: (a) Ji, T.; Chen, X.-Y.; Huang, L.; Rueping, M. Org. Lett. 2020, 22, 2579.
[8]
(b) Zhu, S.; Das, A.; Bui, L.; Zhou, H.; Curran, D. P.; Rueping, M. J. Am. Chem. Soc. 2013, 135, 1823.
[8]
(c) Zou, S.; Li, R.; Kobayashi, H.; Liu, J.; Fan, J. Chem. Commun. 2013, 49, 1906.
[8]
(d) Song, C.; Shen, X.; Yu, F.; He, Y.; Yu, S. Chin. J. Org. Chem. 2020, 40, 3748. (in Chinese)
[8]
(宋常华, 沈许, 于芳, 何宇鹏, 俞寿云, 有机化学, 2020, 40, 3748.)
[8]
(e) Zhao, B.; Tan, H.; Chen, C.; Jiao, N.; Shi, Z. Chin. J. Chem. 2018, 36, 995.
[9]
(a) Mecinovic, J.; Hamed, R. B.; Schofield, C. J. Angew. Chem., nt. Ed. 2009, 48, 2796.
[9]
(b) Allpress, C. J.; Grubel, K.; Szajna-Fuller, E.; Arif, A. M.; Berreau, L. M. J. Am. Chem. Soc. 2013, 135, 659.
[10]
Kohler, E.; Erickson, J. L. E. J. Am. Chem. Soc. 1931, 53, 2301.
[11]
Barany, H. C.; Pianka, M.; Waters, W. A.; Schönberg, A.; Mou- basher, R.; Mostafa, A. J. Chem. Soc. 1946, 965.
[12]
Schönberg, A.; Azzam, R. C. J. Chem. Soc. 1939, 1428.
[13]
Tada, N.; Shomura, M.; Cui, L.; Nobuta, T.; Miura, T.; Itoh, A. Synlett 2011, 2896.
[14]
Berreau, L. M.; Grubel, K.; Allpress, C. J.; Borowski, T.; Wikstrom, J. P.; Germain, M. E.; Rybak-Akimova, E. V.; Tierney, D. L. Inorg. Chem. 2011, 50, 1047.
[15]
Schönberg, A.; Mustafa, A. J. Chem. Soc. 1947, 997.
[16]
For selected recent reviews see: (a) Guo, H.; Fan, Y.; Sun, Z.; Wu, Y.; Kwon, O. Chem. Rev. 2018, 118, 10049.
[16]
(b) Lu, X.; Zhang, C.; Xu, Z. Acc. Chem. Res. 2001, 34, 535.
[16]
(c) Ye, L.-W.; Zhou, J.; Tang, Y. Chem. Soc. Rev. 2008, 37, 1140.
[17]
(a) Nair, V.; Pillai, A. N.; Menon, R. S.; Suresh, E. Org. Lett. 2005, 7, 1189.
[17]
(b) Guo, H.; Xu, Q.; Kwon, O. J. Am. Chem. Soc. 2009, 131, 6318.
[17]
(c) Wu, J.-Y.; Luo, Z.-B.; Dai, L.-X.; Hou, X.-L. J. Org. Chem. 2008, 73, 9137.
[17]
(d) Garima.; Srivastava, V. P.; Yadav, L. D. S. Green Chem. 2010, 12, 1460.
[17]
(e) Meng, L.-G.; Hu, B.; Wu, Q.-P.; Liang, M.; Xue, S. Chem. Commun. 2009, 6089.
[18]
(a) Meng, L.-G.; Wang, L. Chem. Commun. 2012, 48, 3242.
[18]
(b) Meng, L.-G.; Wang, L. Adv. Synth. Catal. 2013, 355, 2967.
[18]
(c) Meng, L.-G.; Ge, N.-L.; Yang, M.-M.; Wang, L. Eur. J. Org. Chem. 2011, 3403.
[19]
(a) Stang, P. J. Acc. Chem. Res. 1991, 24, 304.
[19]
(b) Ackermann, L. Chem. Rev. 2011, 111, 1315.
Outlines

/