Chinese Journal of Organic Chemistry >
Recent Advances in Synergistic Catalysis by Merging N-Heterocyclic Carbenes and Transition Metals
Received date: 2021-06-01
Revised date: 2021-07-02
Online published: 2021-08-19
Supported by
National Natural Science Foundation of China(21572270); National Natural Science Foundation of China(21702232); “Double First-Class” University Project(CPU2018GY02); “Double First-Class” University Project(CPU2018GY35); Fundamental Research Funds for the Central Universities(2632021ZD19)
Unique reaction modes, diverse reaction sites, and structural diversity of both substrates and products have made N-heterocyclic carbene catalysis be of great of importance in the field of organic catalysis. However, there have been a lot of barriers and challenges in terms of the reactivity of substrates and the selectivity of reactions for traditional and single catalytic systems with the deep development of organic synthesis. Recently, synergistic catalysis makes it possible for previously inaccessible transformations and can adjust the reactivity and selectivity more accurately by merging two single catalytic systems, thus has emerged as a powerful catalytic strategy in organic synthesis. In this review, the latest research progress in the field of synergistic catalysis of N-heterocyclic carbenes and transition metals in the last decade is mainly reviewed.
Jianming Zhang , Jian Gao , Jie Feng , Tao Lu , Ding Du . Recent Advances in Synergistic Catalysis by Merging N-Heterocyclic Carbenes and Transition Metals[J]. Chinese Journal of Organic Chemistry, 2021 , 41(10) : 3792 -3807 . DOI: 10.6023/cjoc202106002
[1] | For selected reviews, see: (a) Allen, A. E.; MacMillan, D. W. C. Chem. Sci. 2012, 3, 633. |
[1] | (b) Du, Z.-T.; Shao, Z.-H. Chem. Soc. Rev. 2013, 42, 1337. |
[1] | (c) Chen, D.-F.; Han, Z.-Y.; Zhou, X.-L.; Gong, L.-Z. Acc. Chem. Res. 2014, 47, 2365. |
[1] | (d) Afewerki, S.; Cordova, A. Chem. Rev. 2016, 116, 13512. |
[1] | (e) Kim, D. S.; Park, W. J.; Jun, C. H. Chem. Rev. 2017, 117, 8977. |
[2] | (a) Nicewicz, D. A.; MacMillan, D. W. C. Science 2008, 322, 77. |
[2] | (b) Krautwald, S.; Sarlah, D.; Schafroth, M. A.; Carreira, E. M. Science 2013, 340, 1065. |
[2] | (c) Krautwald, S.; Schafroth, M. A.; Sarlah, D.; Carreira, E. M. J. Am. Chem. Soc. 2014, 136, 3020. |
[2] | (d) Zhou, H.; Zhang, L.; Xu, C.-M.; Luo, S.-Z. Angew. Chem., Int. Ed. 2015, 54, 12645. |
[2] | (e) Næsborg, L.; Halskov, K. S.; Tur, F.; Mønsted, S. M. N.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2015, 54, 10193. |
[2] | (f) Liu, R.-R.; Li, B.-L.; Lu, J.; Shen, C.; Gao, J.-R.; Jia, Y.-X. J. Am. Chem. Soc. 2016, 138, 5198. |
[2] | (g) Afewerki, S.; Córdova, A. Top. Curr. Chem. 2019, 377, 38. |
[3] | (a) Mukherjee, S.; List, B. J. Am. Chem. Soc. 2007, 129, 11336. |
[3] | (b) Hu, W.; Xu, X.; Zhou, J.; Liu, W.-J.; Huang, H.; Hu, J.; Yang, L.; Gong, L.-Z. J. Am. Chem. Soc. 2008, 130, 7782. |
[3] | (c) Hu, W.; Xu, X.; Zhou, J.; Liu, W.-J.; Huang, H.; Hu, J.; Yang, L.; Gong, L.-Z. J. Am. Chem. Soc. 2008, 130, 7782. |
[3] | (d) Cai, Q.; Zhao, Z.-A.; You, S.-L. Angew. Chem., Int. Ed. 2009, 48, 7428. |
[3] | (e) Han, Z.-Y.; Xiao, H.; Chen, X.-H.; Gong, L.-Z. J. Am. Chem. Soc. 2009, 131, 9182. |
[3] | (f) Han, Z.-Y.; Chen, D.-F.; Wang, Y.-Y.; Guo, R.; Wang, P.-S.; Wang, C.; Gong, L.-Z. J. Am. Chem. Soc. 2012, 134, 6532. |
[3] | (g) Chai, Z.; Rainey, T. J. J. Am. Chem. Soc. 2012, 134, 3615. |
[4] | Ohmatsu, K.; Ooi, T. Top. Curr. Chem. (Z) 2019, 377, 31. |
[5] | For selected reviews and examples, see: (a) Enders, D.; Niemeier, O.; Henseler, A. Chem. Rev. 2007, 107, 5606. |
[5] | (b) Bugaut, X.; Glorius, F. Chem. Soc. Rev. 2012, 41, 3511. |
[5] | (c) Grossmann, A.; Enders, D. Angew. Chem., Int. Ed. 2012, 51, 314. |
[5] | (d) Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F. Nature 2014, 510, 485. |
[5] | (e) Flanigan, D. M.; Romanov-Michailidis, F.; White, N. A.; Rovis, T. Chem. Rev. 2015, 115, 9307. |
[5] | (f) Zhang, C.; Hooper, J. F.; Lupton, D. W. ACS Catal. 2017, 7, 2583. |
[5] | (g) Chen, S.-H.; Shi, Y.-H.; Wang, M. Chem. Asian J. 2018, 13, 2184. |
[5] | (h) Murauski, K. J. R.; Jaworski, A. A.; Scheidt, K. A. Chem. Soc. Rev. 2018, 47, 1773. |
[5] | (i) Mondal, S.; Yetra, S. R.; Mukherjee, S.; Biju, A. T. Acc. Chem. Res. 2019, 52, 425. |
[5] | (j) Ohmiya, H. ACS Catal. 2020, 10, 6862. |
[5] | (k) Chen, X.-K.; Wang, H.-L.; Jin, Z.-C.; Chi, Y. R. Chin. J. Chem. 2020, 38, 1167. |
[5] | (l) Li, S.; Xu, J. Y.; Luo, X.; Yang, W.-H.; Yao, C.-S. Chin. J. Org. Chem. 2020, 40, 470. (in Chinese) |
[5] | (李莎, 徐嘉煜, 罗鲜, 杨雯涵, 姚昌盛, 有机化学, 2020, 40, 470.) |
[5] | (m) Zhang, Y.; Xing, F.; Feng, Z.-N.; Du, G.-F.; Gu, C.-Z.; He, L. Chin. J. Org. Chem. 2020, 40, 1608. (in Chinese) |
[5] | (张阳, 邢芬, 冯泽男, 杜广芬, 顾承志, 何林, 有机化学, 2020, 40, 1608.) |
[6] | (a) Cohen, D. T.; Scheidt, K. A. Chem. Sci. 2012, 3, 53. |
[6] | (b) Wang, M.-H. Scheidt, K. A. Angew. Chem., Int. Ed. 2016, 55, 14912. |
[6] | (c) Fortman, G. C.; Nolan, S. P. Chem. Soc. Rev. 2011, 40, 5151. |
[6] | (d) Janssen-Muller, D.; Schlepphorst, C.; Glorius, F. Chem. Soc. Rev. 2017, 46, 4845. |
[6] | (e) Yong, X.-F.; Huang, J.-Q.; Ho, C. Y. Chin. J. Org. Chem. 2020, 40, 3327. (in Chinese) |
[6] | (雍学锋, 黄建强, 何振宇, 有机化学, 2020, 40, 3327.) |
[6] | (f) Lu, H.; Liu, J.-Y.; Li, H.-Y.; Xu, P.-F. Acta Chim. Sinica 2018, 76, 831. (in Chinese) |
[6] | (鲁鸿, 刘金宇, 李红玉, 许鹏飞, 化学学报, 2018, 76, 831.) |
[7] | Lebeuf, R.; Hirano, K.; Glorius, F. Org. Lett. 2008, 10, 4243. |
[8] | Bai, Y.; Xiang, S.; Leow, M. L.; Liu, X.-W. Chem. Commun. 2014, 50, 6168. |
[9] | (a) Yasuda, S.; Ishii, T.; Takemoto, S.; Haruki, H.; Ohmiya, H. Angew. Chem., Int. Ed. 2018, 57, 2938. |
[9] | (b) Takemoto, S.; Ishii, T.; Yasuda, S.; Ohmiya, H. Bull. Chem. Soc. Jpn. 2019, 92, 937. |
[10] | Haruki, H.; Yasuda, S.; Nagao, K.; Ohmiya, H. Chem.-Eur. J. 2019, 25, 724. |
[11] | Ohnishi, N.; Yasuda, S.; Nagao, K.; Ohmiya, H. Asian J. Org. Chem. 2019, 8, 1133. |
[12] | (a) Bi, W.-Y.; Yang, Y.-H.; Ye, S.; Wang, C.-Y. Chem. Commun. 2021, 57, 4452. |
[12] | (b) Cheng, L.; Wang, W.-R.; Sun, Y.-Q.; Li, T.-J.; Yu, C.-X.; Yao, C.-S. Chin. J. Org. Chem. 2021, 41, 1607. (in Chinese) |
[12] | (成立, 王文蓉, 孙玉倩, 李团结, 于晨侠, 姚昌盛, 有机化学, 2021, 41, 1607.) |
[13] | Guo, C.; Fleige, M.; Janssen-Mu?ller, D.; Daniliuc, C. G.; Glorius, F. J. Am. Chem. Soc. 2016, 138, 7840. |
[14] | Guo, C.; Janssen-Muller, D.; Fleige, M.; Lerchen, A.; Daniliuc, C. G.; Glorius, F. J. Am. Chem. Soc. 2017, 139, 4443. |
[15] | Zhang, Z.-J.; Zhang, L.; Geng, R.-L.; Song, J.; Chen, X.-H.; Gong, L.-Z. Angew. Chem., Int. Ed. 2019, 58, 12190. |
[16] | Meyer, A. G.; Bissemberx, A. C.; Hyland, C. J. T.; Williams, C. C.; Szabo, M.; Abelx, S.-A. G.; Bird, M. J.; Hylandx, I. K.; Pham, H. Prog. Heterocycl. Chem. 2018, 30, 493. |
[17] | Zhang, Z.-J.; Wen, Y.-H. Song, J.; Gong, L.-Z. Angew. Chem., Int. Ed. 2021, 60, 3268. |
[18] | Yang, W.; Ling, B.; Hu, B.; Yin, H.; Mao, J.; Walsh, P. J. Angew. Chem., Int. Ed. 2020, 59, 161. |
[19] | Reynolds, N. T.; Rovis, T. J. Am. Chem. Soc. 2005, 127, 16406. |
[20] | Liu, K.; Hovey, M. T.; Scheidt, K. A. Chem. Sci. 2014, 5, 4026. |
[21] | Singha, S.; Patra, T.; Daniliuc, C. G.; Glorius, F. J. Am. Chem. Soc. 2018, 140, 3551. |
[22] | Singha, S.; Serrano, E.; Mondal, S.; Daniliuc, C. G.; Glorius, F. Nat. Catal. 2020, 3, 48. |
[23] | Zhang, J.; Gao, Y.-S.; Gu, B.-M.; Yang, W.-L.; Tian, B.-X.; Deng, W.-P. ACS Catal. 2021, 11, 3810. |
[24] | Zhou, L.-J.; Wu, X.-X.; Yang, X.; Mou, C.-L.; Song, R.-J.; Yu, S.-Y.; Chai, H.-F.; Pan, L.-T.; Jin, Z.-C.; Chi, Y. R. Angew. Chem., Int. Ed. 2020, 59, 1557. |
[25] | Chen, X.-Y.; Liu, Q.; Chauhan, P.; Enders, D. Angew. Chem., Int. Ed. 2018, 57, 3862. |
[26] | Gao, J.; Zhang, J.-M.; Fang, S.-S.; Feng, J.; Lu, T.; Du, D. Org. Lett. 2020, 22, 7725. |
[27] | Namitharan, K.; Zhu, T.-S.; Cheng, J.-J.; Zheng, P.-C.; Li, X.-Y.; Yang, S.; Song, B.-A; Chi, Y. R. Nat. Commun. 2014, 5, 3982. |
[28] | Ding, Y.-L.; Zhao, Y.-L.; Niu, S.-S.; Wu, P.; Cheng, Y. J. Org. Chem. 2020, 85, 612. |
/
〈 |
|
〉 |