ARTICLES

Sc(OTf)3-Catalyzed Reaction of Purines with o-Hydroxybenzyl Alcohols for Construction of Acyclic Nucleosides

  • Chao Xia ,
  • Dongchao Wang ,
  • Haiming Guo
Expand
  • a School of Environment, Henan Normal University, Xinxiang, Henan 453007
    b Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007
* Corresponding author. E-mail:

Received date: 2021-06-05

  Revised date: 2021-07-16

  Online published: 2021-08-19

Supported by

National Natural Science Foundation of China(22071046); Zhongyuan Scholar(212101510004); National Government Guides Local Special Funds for the Development of Science and Technology(YDZX20204100001786)

Abstract

Efficient alkylation of purines with ortho-hydroxybenzyl alcohols under mild condition has been achieved by Sc(OTf)3 catalysis. This C—N bond formation process is proposed to proceed through an ortho-quinone methide intermediate. The reaction allows for efficient synthesis of various acyclic nucleoside analogs, with excellent yields of up to 96%, across a broad range of substrates and the yields were maintained as the reactions were scaled up.

Cite this article

Chao Xia , Dongchao Wang , Haiming Guo . Sc(OTf)3-Catalyzed Reaction of Purines with o-Hydroxybenzyl Alcohols for Construction of Acyclic Nucleosides[J]. Chinese Journal of Organic Chemistry, 2021 , 41(11) : 4391 -4399 . DOI: 10.6023/cjoc202106010

References

[1]
(a) Willis, N. J.; Bray, C. D. Chem.-Eur. J. 2012, 18, 9160.
[1]
(b) Bai, W.-J.; David, J. G.; Feng, Z.-G.; Weaver, M. G.; Wu, K.-L.; Pettus, T. R. R. Acc. Chem. Res. 2014, 47, 3655.
[1]
(c) Jaworski, A. A.; Scheidt, K. A. J. Org. Chem. 2016, 81, 10145.
[1]
(d) Yang, B.; Gao, S. Chem. Soc. Rev. 2018, 47, 7926.
[2]
(a) Meisinger, N.; Roiser, L.; Monkowius, U.; Himmelsbach, M.; Robiette, R.; Waser, M. Chem.-Eur. J. 2017, 23, 5137.
[2]
(b) Suneja, A.; Schneider, C. Org. Lett. 2018, 20, 7576.
[2]
(c) Pandit, R. P.; Kim, S. T.; Ryu, D. H. Angew. Chem., Int. Ed. 2019, 58, 13427.
[3]
(a) Bu, H.-Z.; Li, H.-H.; Luo, W.-F.; Luo, C.; Qian, P.-C.; Ye, L.-W. Org. Lett. 2020, 22, 648.
[3]
(b) Feng, S.; Yang, B.; Chen, T.; Wang, R.; Deng, Y.-H.; Shao, Z. J. Org. Chem. 2020, 85, 5231.
[3]
(c) Huang, H.-M.; Wu, X.-Y.; Leng, B.-R.; Zhu, Y.-L.; Meng, X.-C.; Hong, Y.; Jiang, B.; Wang, D.-C. Org. Chem. Front. 2020, 7, 414.
[3]
(d) Shi, H.; Wang, L.; Li, S.-S.; Liu, Y.; Xu, L. Org. Chem. Front. 2020, 7, 747.
[3]
(e) Tanaka, K.; Asada, Y.; Hoshino, Y.; Honda, K. Org. Biomol. Chem. 2020, 18, 8074.
[3]
(f) Tu, M.-S.; Liu, S.-J.; Zhong, C.; Zhang, S.; Zhang, H.; Zheng, Y.-L.; Shi, F. J. Org. Chem. 2020, 85, 5403.
[3]
(g) You, Y.; Li, T.-T.; Yuan, S.-P.; Xie, K.-X.; Wang, Z.-H.; Zhao, J.-Q.; Zhou, M.-Q.; Yuan, W.-C. Chem. Commun. 2020, 56, 439.
[4]
(a) Mei, G.-J.; Zhu, Z.-Q.; Zhao, J.-J.; Bian, C.-Y.; Chen, J.; Chen, R.-W.; Shi, F. Chem. Commun. 2017, 53, 2768.
[4]
(b) Lam, H.; Qureshi, Z.; Wegmann, M.; Lautens, M. Angew. Chem., Int. Ed. 2018, 57, 16185.
[4]
(c) Sun, M.; Ma, C.; Zhou, S.-J.; Lou, S.-F.; Xiao, J.; Jiao, Y.; Shi, F. Angew. Chem., Int. Ed. 2019, 58, 8703.
[4]
(d) Suneja, A.; Loui, H. J.; Schneider, C. Angew. Chem., Int. Ed. 2020, 59, 5536.
[4]
(e) Yan, R.-J.; Liu, B.-X.; Xiao, B.-X.; Du, W.; Chen, Y.-C. Org. Lett. 2020, 22, 4240.
[4]
(f) Zhou, S.-J.; Sun, M.; Wang, J.-Y.; Yu, X.-Y.; Lu, H.; Zhang, Y.-C.; Shi, F. Eur. J. Org. Chem. 2020, 4301.
[5]
Xia, C.; Wang, D.-C.; Qu, G.-R.; Guo, H.-M. Org. Chem. Front. 2020, 7, 1474.
[6]
(a) Wang, Y.; Zhang, C.; Wang, H.; Jiang, Y.; Du, X.; Xu, D. Adv. Synth. Catal. 2017, 359, 791.
[6]
(b) Wu, J.-L.; Wang, J.-Y.; Wu, P.; Mei, G.-J.; Shi, F. Org. Chem. Front. 2017, 4, 2465.
[6]
(c) Zhou, J.; Huang, W.-J.; Jiang, G.-F. Org. Lett. 2018, 20, 1158.
[6]
(d) Wu, Q.; Li, G.-L.; Yang, S.; Shi, X.-Q.; Huang, T.-Z.; Du, X.-H.; Chen, Y. Org. Biomol. Chem. 2019, 17, 3462.
[6]
(e) Chu, M.-M.; Chen, X.-Y.; Wang, Y.-F.; Qi, S.-S.; Jiang, Z.-H.; Xu, D.-Q.; Xu, Z.-Y. J. Org. Chem. 2020, 85, 9491.
[6]
(f) Zhang, Y.-Z.; Sheng, F.-T.; Zhu, Z.; Li, Z.-M.; Zhang, S.; Tan, W.; Shi, F. Org. Biomol. Chem. 2020, 18, 5688.
[7]
Lai, Z.; Wang, Z.; Sun, J. Org. Lett. 2015, 17, 6058.
[8]
(a) Guo, W.; Wu, B.; Zhou, X.; Chen, P.; Wang, X.; Zhou, Y.-G.; Liu, Y.; Li, C. Angew. Chem., Int. Ed. 2015, 54, 4522.
[8]
(b) Lai, Z.; Sun, J. Synlett 2016, 27, 555.
[8]
(c) Roy, D.; Panda, G. Tetrahedron 2018, 74, 6270.
[9]
(a) Huang, H.; Kang, J. Y. Org. Lett. 2017, 19, 5988.
[9]
(b) Gu, X.; Yuan, H.; Jiang, J.; Wu, Y.; Bai, W.-J. Org. Lett. 2018, 20, 7229.
[10]
(a) Chen, M.; Han, Y.; Ma, D.; Wang, Y.; Lai, Z.; Sun, J. Chin. J. Chem. 2018, 36, 587.
[10]
(b) Pelayo, S. G.; López, L. A. Eur. J. Org. Chem. 2017, 2017, 6003.
[10]
(c) Chen, L.-M.; Zhao, J.; Xia, A.-J.; Guo, X.-Q.; Gan, Y.; Zhou, C.; Yang, Z.-J.; Yang, J.; Kang, T.-R. Org. Biomol. Chem. 2019, 17, 8561.
[10]
(d) Osyanin, V. A.; Osipov, D. V.; Nakushnov, V. Y.; Zemtsova, M. N.; Klimochkin, Y. N. Chem. Heterocycl. Compd. 2015, 51, 984.
[11]
(a) Kelley, J. L.; Kelsey, J. E.; Hall, W. R.; Krochmal, M. P.; Schaeffer, H. J. J. Med. Chem. 1981, 24, 753.
[11]
(b) Vandenriessche, F.; Snoeck, R.; Janssen, G.; Hoogmartens, J.; Aerschot, A. V.; Clercq, E. D.; Herdewijn, P. J. Med. Chem. 1992, 35, 1458.
[11]
(c) Sekiyama, T.; Hatsuya, S.; Tanaka, Y.; Uchiyama, M.; Ono, N.; Iwayama, S.; Oikawa, M.; Suzuki, K.; Okunishi, M.; Tsuji, T. J. Med. Chem. 1998, 41, 1284.
[11]
(d) Hakimelahi, G. H.; Ly, T. W.; Movahedi, A. A. M.; Jain, M. L.; Zakerinia, M.; Davari, H.; Mei, H.-C.; Sambaiah, T.; Moshfegh, A. A.; Hakimelahi, S. J. Med. Chem. 2001, 44, 3710.
[11]
(e) Hernández, A.-I.; Balzarini, J.; Karlsson, A.; Camarasa, M.-J.; Pérez, M.-J. J. Med. Chem. 2002, 45, 4254.
[11]
(f) Clercq, E. D. J. Med. Chem. 2019, 62, 7322.
[12]
(a) Palazzolo, M. A.; Nigro, M. J.; Iribarren, A. M.; Lewkowicz, E. S. Eur. J. Org. Chem. 2016, 2016, 921.
[12]
(b) Derudas, M.; Vanpouille, C.; Carta, D.; Zicari, S.; Andrei, G.; Snoeck, R.; Brancale, A.; Margolis, L.; Balzarini, J.; McGuigan, C. J. Med. Chem. 2017, 60, 7876.
[12]
(c) Lee, S.-J.; Ahn, J.-G.; Seo, J.; Ha, H.-J.; Cho, C.-W. Org. Biomol. Chem. 2018, 16, 9477.
[12]
(d) Zhang, H.; Xie, M.; Qu, G.; Chang, J. Org. Lett. 2019, 21, 120.
[12]
(e) Baddi, L.; Ouzebla, D.; Mansouri, A.-E.; Smietana, M.; Vasseur, J.-J.; Lazrek, H. B. Nucleosides, Nucleotides Nucleic Acids 2021, 40, 43.
[13]
(a) Sun, H.-L.; Chen, F.; Xie, M.-S.; Guo, H.-M.; Qu, G.-R.; He, Y.-M.; Fan, Q.-H. Org. Lett. 2016, 18, 2260.
[13]
(b) Zhou, P.; Xie, M.-S.; Qu, G.-R.; Li, R.-L.; Guo, H.-M. Asian J. Org. Chem. 2016, 5, 1100.
[13]
(c) Liang, L.; Xie, M.-S.; Qin, T.; Zhu, M.; Qu, G.-R.; Guo, H.-M. Org. Lett. 2017, 19, 5212.
[13]
(d) Wang, H.-X.; Yu, L.-L.; Xie, M.-S.; Wu, J.; Qu, G-R.; Ding, K.-L.; Guo, H.-M. Chem.-Eur. J. 2018, 24, 1425.
[13]
(e) Liang, T.; Xie, M.-S.; Qu, G.-R.; Guo, H.-M. Asian J. Org. Chem. 2019, 8, 1405.
[13]
(f) Hao, E.-J.; Li, G.-X.; Liang, Y.-R.; Xie, M.-S.; Wang, D.-C.; Jiang, X.-H.; Cheng, J.-Y.; Shi, Z.-X.; Wang, Y.; Guo, H.-M. J. Med. Chem. 2021, 64, 2077.
[13]
(g) Xia, C.; Wang, D.-C.; Qu, G.-R.; Guo, H.-M. Org. Chem. Front. 2021, 8, 2569.
Outlines

/