REVIEWS

Research Progress of 1,3,5-Triazinanes in the Synthesis of Nitrogen-Containing Heterocycles

  • Jiantao Zhang ,
  • Peng Zhou ,
  • Duoduo Xiao ,
  • Weibing Liu
Expand
  • College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000
* Corresponding authors. E-mail: ;

Received date: 2021-07-09

  Revised date: 2021-08-11

  Online published: 2021-08-25

Supported by

Projects of Talents Recruitment of Guangdong University of Petrochemical Technology(2019rc048); Projects of Talents Recruitment of Guangdong University of Petrochemical Technology(2017rc07); Program for Innovative Research Team of Guangdong University of Petrochemical Technology(519124); Ordinary University Young Innovative Talents Project of Guangdong Province, China(2018KQNCX167)

Abstract

1,3,5-Triazinanes are an important class of synthons, which could be regarded as the equivalent of formaldehyde imines in constructing various nitrogen-containing heterocyclic skeletons. In recent years, 1,3,5-triazinanes have attracted much attention in the construction of nitrogen-containing heterocyclic compounds. Based on this, the participation of 1,3,5-triazinanes as diatomic, triatomic and four-atom synthons in [2+n], [3+n], [4+n] cycloaddition reactions to construct nitrogen-containing heterocyclic compounds is systematically summarized. Its applications in cycloaddition, heterocyclic chemistry and pharmaceutical chemistry are also summarized. Moreover, the development of 1,3,5-triazinanes in the construction of nitrogen-containing heterocyclic skeletons and their future applications are also prospected.

Cite this article

Jiantao Zhang , Peng Zhou , Duoduo Xiao , Weibing Liu . Research Progress of 1,3,5-Triazinanes in the Synthesis of Nitrogen-Containing Heterocycles[J]. Chinese Journal of Organic Chemistry, 2021 , 41(11) : 4154 -4166 . DOI: 10.6023/cjoc202107023

References

[1]
(a) Tang, Y.; Zhang, J.; Zhang, S.; Geng, R.; Zhou, C. Chin. J. Chem. 2012, 30, 1831.
[1]
(b) Yu, K.; Gao, B.; Ding, H. Acta Chim. Sinica 2016, 74, 410. (in Chinese)
[1]
(余宽, 高北岭, 丁寒锋, 化学学报, 2016, 74, 410.)
[1]
(c) Liu, J.; Lin, Z.; Chen, H.; Guo, H.; Tao, J.; Liu, W. Chin. J. Chem. 2019, 37, 35.
[1]
(d) Ye, Z.; Zhang, F. Chin. J. Chem. 2019, 37, 513.
[1]
(e) Mu, B. S.; Zhang, Z. H.; Wu, W. B.; Yu, J. S.; Zhou, J. Acta Chim. Sinica 2021, 79, 685. (in Chinese)
[1]
(穆博帅, 张志豪, 武文彪, 余金生, 周剑, 化学学报, 2021, 79, 685.)
[2]
Zheng, Y.; Chi, Y.; Bao, M.; Qiu, L.; Xu, X. J. Org. Chem. 2017, 82, 2129.
[3]
Ha, H.-J.; Choi, C.-J.; Ahn, Y.-G.; Yun, H.; Dong, Y.; Lee, W. K. J. Org. Chem. 2000, 65, 8384.
[4]
Oda, S.; Sam, B.; Krische, M. J. Angew. Chem., nt. Ed. 2015, 54, 8525.
[5]
Oda, S.; Franke, J.; Krische, M. J. Chem. Sci. 2016, 7, 136.
[6]
Lian, X.; Lin, L.; Fu, K.; Ma, B.; Liu, X.; Feng, X. Chem. Sci. 2017, 8, 1238.
[7]
Gong, J.; Li, S.-W.; Qurban, S.; Kang, Q. Eur. J. Org. Chem. 2017, 3584.
[8]
Liu, R.; Liu, J.; Wei, Y.; Shi, M. Org. Lett. 2019, 21, 4077.
[9]
Ruscoe, R. E.; Callingham, M.; Baker, J. A.; Korkis, S. E.; Lam, H. W. Chem. Commun. 2019, 55, 838.
[10]
Wang, Y.; Zheng, H.; Xu, J.; Zhuang, C.; Liu, X.; Cao, H. Org. Chem. Front. 2021, 10.1039/d1qo00883h.
[11]
Peng, S.; Ji, D.; Sun, J. Chem. Commun. 2017, 53, 12770.
[12]
Schneider, T. F.; Kaschel, J.; Werz, D. B. Angew. Chem., nt. Ed. 2014, 53, 5504.
[13]
Grover, H. K.; Emmett, M. R.; Kerr, M. A. Org. Biomol. Chem. 2015, 13, 655.
[14]
Singh, P.; Varshnaya, R. K.; Dey, R.; Banerjee, P. Adv. Synth. Catal. 2020, 362, 1447.
[15]
Pirenne, V.; Muriel, B.; Waser, J. Chem. Rev. 2021, 121, 227.
[16]
Wang, J.; Blaszczyk, S. A.; Li, X.; Tang, W. Chem. Rev. 2021, 121, 110.
[17]
Garve, L. K. B.; Kreft, A.; Jones, P. G.; Werz, D. B. J. Org. Chem. 2017, 82, 9235.
[18]
Chu, Z.-Y.; Li, N.; Liang, D.; Li, Z.-H.; Zheng, Y.-S.; Liu, J.-K. Tetrahedron Lett. 2018, 59, 715.
[19]
Tu, L.; Li, Z.; Feng, T.; Yu, S.; Huang, R.; Li, J.; Wang, W.; Zheng, Y.; Liu, J.-K. J. Org. Chem. 2019, 84, 11161.
[20]
Shi, Z.; Fan, T.; Zhang, X.; Zhan, F.; Wang, Z.; Zhao, L.; Lin, J.-S.; Jiang, Y. Adv. Synth. Catal. 2021, 363, 2619.
[21]
Zhang, X.; Cheng, B.; Li, H.; He, Y.; Xu, W.; Duan, X.; Sun, H.; Wang, T.; Zhai, H. Adv. Synth. Catal. 2021, 363, 565.
[22]
Ji, D.; Sun, J. Org. Lett. 2018, 20, 2745.
[23]
Zhang, C.-B.; Dou, P.-H.; You, Y.; Wang, Z.-H.; Zhou, M.-Q.; Xu, X.-Y.; Yuan, W.-C. Tetrahedron 2019, 75, 130571.
[24]
Ji, D.; Wang, C.; Sun, J. Org. Lett. 2018, 20, 3710.
[25]
Zheng, Y.; Tu, L.; Li, N.; Huang, R.; Feng, T.; Sun, H.; Li, Z.; Liu, J.-K. Adv. Synth. Catal. 2019, 361, 44.
[26]
Liang, D.; Tan, L.-P.; Xiao, W.-J.; Chen, J.-R. Chem. Commun. 2020, 56, 3777.
[27]
Cheng, X.; Zhou, S.-J.; Xu, G.-Y.; Wang, L.; Yang, Q.-Q.; Xuan, J. Adv. Synth. Catal. 2020, 362, 523.
[28]
Cheng, B.; Zhang, X.; Zhai, S.; He, Y.; Tao, Q.; Li, H.; Wei, J.; Sun, H.; Wang, T.; Zhai, H. Adv. Synth. Catal. 2020, 362, 3836.
[29]
Cheng, X.; Cai, B.-G.; Mao, H.; Lu, J.; Li, L.; Wang, K.; Xuan, J. Org. Lett. 2021, 23, 4109.
[30]
Yang, Y.; Yang, W. Chem. Commun. 2018, 54, 12182.
[31]
Xu, Y.; Chen, L.; Yang, Y.; Zhang, Z.; Yang, W. Org. Lett. 2019, 21, 6674.
[32]
Wang, J.; Zhao, L.; Rong, Q.; Lv, C.; Lu, Y.; Pan, X.; Zhao, L.; Hu, L. Org. Lett. 2020, 22, 5833.
[33]
Lu, W.-Y.; Wang, Y.; You, Y.; Wang, Z.-H.; Zhao, J.-Q.; Zhou, M.-Q.; Yuan, W.-C. J. Org. Chem. 2021, 86, 1779.
[34]
Yang, L.-C.; Rong, Z.-Q.; Wang, Y.-N.; Yin Tan, Z.; Wang, M.; Zhao, Y. Angew. Chem., nt. Ed. 2017, 56, 2927.
[35]
Das, P.; Gondo, S.; Nagender, P.; Uno, H.; Tokunaga, E.; Shibata, N. Chem. Sci. 2018, 9, 3276.
[36]
Wei, Y.; Liu, S.; Li, M.-M.; Li, Y.; Lan, Y.; Lu, L.-Q.; Xiao, W.-J.; J. Am. Chem. Soc. 2019, 141, 133.
[37]
Xia, C.; Wang, D.-C.; Qu, G.-R.; Guo, H.-M. Org. Chem. Front. 2020, 7, 1474.
[38]
Chen, L.; Liu, K.; Sun, J. RSC Adv. 2018, 8, 5532.
[39]
Cheng, B.; Li, H.; Hou, J.; Zhang, X.; He, Y.; Sun, H.; Xu, W.; Wang, T.; Zhai, H. J. Org. Chem. 2020, 85, 13339.
[40]
Ford, A.; Miel, H.; Ring, A.; Slattery, C. N.; Maguire, A. R.; McKervey, M. A. Chem. Rev. 2015, 115, 9981;
[41]
Cheng, X.; Cai, B.-G.; Mao, H.; Lu, J.; Li, L.; Wang, K.; Xuan, J. Org. Lett. 2021, 23, 4109.
[42]
Zhu, C.; Xu, G.; Sun, J. Angew. Chem., nt. Ed. 2016, 55, 11867.
[43]
Liu, P.; Xu, G.; Sun, J. Org. Lett. 2017, 19, 1858.
[44]
Liu, P.; Zhu, C.; Xu, G.; Sun, J. Org. Biomol. Chem. 2017, 15, 7743.
[45]
Zhou, Y.; Ma, F.; Lu, P.; Wang, Y. Org. Biomol. Chem. 2019, 17, 8849.
[46]
Reis, M. I. P.; Campos, V. R.; Resende, J. A. L. C.; Silva1, F. C.; Ferreira, V. F. Beilstein J. Org. Chem. 2015, 11, 1235.
[47]
Peng, S.; Cao, S.; Sun, J. Org. Lett. 2017, 19, 524.
[48]
Wang, X.-N.; Yeom, H.-S.; Fang, L.-C.; He, S.; Ma, Z.-X.; Kedrowski, B. L.; Hsung, R. P. Acc. Chem. Res. 2014, 47, 560.
[49]
Chen, Y.-B.; Qian, P.-C.; Ye, L.-W. Chem. Soc. Rev. 2020, 49, 8897.
[50]
Zhou, X. Y.; Liang, Z. X.; Wang, X. N. Chin. J. Org. Chem. 2021, 41, 1288. (in Chinese)
[50]
(周欣悦, 梁宗显, 王晓娜, 有机化学, 2021, 41, 1288.)
[51]
Hu, Y.-C.; Zhao, Y.; Wan, B.; Chen, Q.-A. Chem. Soc. Rev. 2021, 50, 2582.
[52]
Zeng, Z.; Jin, H.; Song, X.; Wang, Q.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Chem. Commun. 2017, 53, 4304.
[53]
Garve, L. K. B.; Jones, P. G.; Werz, D. B. Angew. Chem. Int. Ed. 2017, 56, 9226.
[54]
Liu, F.; Yu, Y.; Zhang, J. Angew. Chem. Int. Ed. 2009, 48, 5505.
[55]
Gao, H.; Zhao, X.; Yu, Y.; J. Zhang, Chem.-Eur. J. 2010, 16, 456.
[56]
He, T.; Gao, P.; Qiu, Y.-F.; Yan, X.-B.; Liu, X.-Y.; Liang, Y.-M. RSC Adv. 2013, 3, 19913.
[57]
Wang, Y.; Zhang, P.; Qian, D.; Zhang, J. Angew. Chem., nt. Ed. 2015, 54, 14849.
[58]
Qi, J.; Teng, Q.; Thirupathi, N.; Tung, C.-H.; Xu, Z. Org. Lett. 2019, 21, 692.
[59]
Di, X.; Wang, Y.; Wu, L.; Zhang, Z.-M.; Dai, Q.; Li, W.; Zhang, J. Org. Lett. 2019, 21, 3018.
[60]
Kardile, R. D.; Chao, T.-H.; Cheng, M.-J.; Liu, R.-S. Angew. Chem., nt. Ed. 2020, 59, 10396.
[61]
Liu, S.; Yang, P.; Peng, S.; Zhu, C.; Cao, S.; Li, J.; Sun, J. Chem. Commun. 2017, 53, 1152.
[62]
Kamata, M.; Yamashita, T.; Kina, A.; Tawada, M. Endo, S.; Mizukami, A.; Sasaki, M.; Tani, A.; Nakano, Y.; Watanabe, Y.; Furuyama, N.; Funami, M.; Amano, N.; Fukatsu, K. Bioorg. Med. Chem. Lett. 2012, 22, 4769.
[63]
Liang, D.; Xiao, W.-J.; Chen, J.-R. Synthesis 2020, 52, 2469.
[64]
Chen, R.; Liu, Q.; Wang, K.-K.; Qi, Y.; Zhou, Y.; Zhang, A.; Meng, T.; Liu, L. Asian J. Org. Chem. 2021, 10, 371.
[65]
Chattopadhyay, B.; Gevorgyan, V. Angew. Chem., nt. Ed. 2012, 51, 862.
[66]
Gulevich, A. V.; Gevorgyan, V. Angew. Chem., nt. Ed. 2013, 52, 1371.
[67]
Davies, H. M. L.; Alford, J. S. Chem. Soc. Rev. 2014, 43, 5151.
[68]
Jia, M.; Ma, S. Angew. Chem., nt. Ed. 2016, 55, 9134.
[69]
Jiang, Y.; Sun, R.; Tang, X. Y.; Shi, M. Chem.-Eur. J. 2016, 22, 17910.
[70]
Xia, Y.; Qiu, D.; Wang, J. Chem. Rev. 2017, 117, 13810.
[71]
Li, Y.; Yang, H.; Zhai, H. Chem.-Eur. J. 2018, 24, 12757.
[72]
Ge, J.; Wu, X.; Bao, X. Chem. Commun. 2019, 55, 6090.
Outlines

/