Chinese Journal of Organic Chemistry >
Mechanistic Study of Cu-Catalyzed Addition Reaction of lsocyanates
Received date: 2021-07-15
Revised date: 2021-08-15
Online published: 2021-08-25
Supported by
National Natural Science Foundation of China(21903071); Program for Science Technology Innovation Talents in Universities of Henan Province(20HASTIT004)
As a C1 synthetic block, isocyanates were widely used in the synthesis of amide derivatives or heterocyclic compounds. Density functional theory (DFT) calculation was employed to reveal the mechanism of Cu(I)-catalyzed hydroboraethylation of isocyanates. Cu(I)OtBu was considered as the active species in catalytic cycle. The catalytic cycle involves transmetallation with borane, alkene insertion, isocyanate insertion, and transmetallation with LiOtBu to yield lithium acetylamide product. The isocyanate insertion was considered as rate-determining step, which underwent a unique three- membered ring type transition state. The catalytic cycle with chiral phosphine ligand was also considered for this reaction. DFT calculation resulted that the enantioselectivity was determined at the alkene insertion step, which was controlled by steric effect of phosphine ligand. Moreover, it was also found that the activation free energy for the rate-determining step with phosphine ligand was lower than that with carbene ligand. Therefore, the phosphine ligand would lead to a higher reaction rate.
Li Huang , Yuhao Wang , Jiying Liu , Shijun Li , Wenjing Zhang , Yu Lan . Mechanistic Study of Cu-Catalyzed Addition Reaction of lsocyanates[J]. Chinese Journal of Organic Chemistry, 2021 , 41(11) : 4347 -4352 . DOI: 10.6023/cjoc202107031
[1] | Monie, F.; Grignard, B.; Thomassin, J.-M.; Mereau, R.; Tassaing, T.; Jerome, C.; Detrembleur, C. Angew. Chem., nt. Ed. 2020, 59, 17033. |
[2] | Allen, M. A.; Ivanovich, R. A.; Beauchemin, A. M. Angew. Chem., nt. Ed. 2020, 59, 23188. |
[3] | Sharpe, H. R.; Geer, A. M.; Lewis, W.; Blake, A. J.; Kays, D. L. Angew. Chem.,Int. Ed. 2017, 56, 4845. |
[4] | Zheng, S.; Primer, D. N.; Molander, G. A. ACS Catal. 2017, 7, 7957. |
[5] | Mohjer, F.; Mofatehnia, P.; Rangraz, Y.; Heravi, M. M. J. Organomet. Chem. 2021, 936, 121712. |
[6] | Cui, C.-X.; Chen, H.; Li, S.-J.; Zhang, T.; Qu, L.-B.; Lan, Y. Coord. Chem. Rev. 2020, 412, 213251. |
[7] | Zhang, C.; Zhu, Y. Y.; Wei, D. H.; Sun, D. Z.; Zhang, W. J.; Tang, M. S. J. Phys. Chem. A 2010, 114, 2913. |
[8] | Khan, A.; Xing, J. X.; Zhao, J. M.; Kan, Y. H.; Zhang, W. B.; Zhang, Y. J. Chem.-Eur. J. 2015, 21, 120. |
[9] | Yingcharoen, P.; Natongchai, W.; Poater, A.; D'Elia, V. Catal. Sci. Technol. 2020, 10, 5544. |
[10] | Bruffaerts, J.; von Wolff, N.; Diskin-Posner, Y.; Ben-David, Y.; Milstein, D. J. Am. Chem. Soc. 2019, 141, 16486. |
[11] | Yang, Y.; Anker, M. D.; Fang, J.; Mahon, M. F.; Maron, L.; Weetman, C.; Hill, M. S. Chem. Sci. 2017, 8, 3529. |
[12] | Lu, C. R.; Hu, L. J.; Zhao, B.; Yao, Y. M. Organometallics 2019, 38, 2167. |
[13] | Yang, Y.; Canty, A. J.; O'Hair, R. A. J. J. Mass Spectrom. 2021, 56, e4579. |
[14] | Alves, L. G.; Madeira, F.; Munhá, R. F.; Barros, S.; Veiros, L. F.; Martins, A. M. Dalton Trans. 2015, 44, 1441. |
[15] | Fiorito, D.; Liu, Y.; Besnard, C.; Mazet, C. J. Am. Chem. Soc. 2020, 142, 623. |
[16] | Peris, E. Chem. Rev. 2018, 118, 9988. |
[17] | Kuwata, S.; Hahn, F. E. Chem. Rev. 2018, 118, 9642. |
[18] | Xu, G. Q.; Senanayake, C. H.; Tang, W. J. Acc. Chem. Res. 2019, 52, 1101. |
[19] | Fu, W. Z.; Tang, W. J. ACS Catal. 2016, 6, 4814. |
[20] | de Figueiredo, R. M.; Suppo, J.-S.; Campagne, J.-M. Chem. Rev. 2016, 116, 12029. |
[21] | (a) Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133. |
[21] | (b) Kohn, W. Rev. Mod. Phys. 1999, 71, 1253. |
[22] | Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CT, 2013. |
[23] | (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. |
[23] | (b) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623. |
[23] | (c) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37, 785. |
[24] | (a) Dolg, M.; Stoll, H.; Preuss, H. J. Chem. Phys. 1989, 90, 1730. |
[24] | (b) Dolg, M.; Wedig, U.; Stoll, H.; Preuss, H. J. Chem. Phys. 1987, 86, 866. |
[25] | (a) Francl, M. M. J. Chem. Phys. 1982, 77, 3654. |
[25] | (b) Hehre, W. J. J. Chem. Phys. 1972, 56, 2257. |
[25] | (c) Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213. |
[26] | (a) Sang-Aroon, W.; Ruangpornvisuti, V. Int. J. Quantum Chem. 2008, 108, 1181. |
[26] | (b) Tomasi, J.; Mennucci, B.; Cancès, E. J. Mol. Struct. 1999, 464, 211. |
[27] | (a) Gonzalez, C.; Schlegel, H. B. J. Chem. Phys. 1989, 90, 2154. |
[27] | (b) Gonzalez, C.; Schlegel, H. B. J. Phys. Chem. 1990, 94, 5523. |
[28] | Zhao, Y.; Truhlar, D. Theor. Chem. Acc. 2008, 120, 215. |
[29] | (a) Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297. |
[29] | (b) Cancès, E.; Mennucci, B.; Tomasi, J. J. Chem. Phys. 1997, 107, 3032. |
[30] | (a) Liu, C.; Li, S.-J.; Han, P.; Qu, L.-B.; Lan, Y. Mol. Catal. 2021, 499, 111318. |
[30] | (b) Shen, B.; Liu, S.; Zhu, L.; Zhong, K.; Liu, F.; Chen, H.; Bai, R.; Lan, Y. Organometallics, 2020, 39, 2813. |
[30] | (c) Wang, Y.; Liao, W.; Huang, G.; Xia, Y.; Yu, Z.-X. J. Org. Chem. 2014, 79, 5684. |
/
〈 |
|
〉 |