REVIEWS

Applications of Proton-Coupled Electron Transfer in Organic Synthesis

  • Zijie Zhou ,
  • Xiangmei Kong ,
  • Tianfei Liu
Expand
  • a State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071
    b Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032
* Corresponding author. E-mail:

Received date: 2021-06-01

  Revised date: 2021-07-22

  Online published: 2021-08-25

Supported by

Startup Fund from Nankai University

Abstract

Proton-coupled electron transfer (PCET) reactions are a kind of unconventional redox reactions, which exhibit special reactivities and selectivities due to their unique interdependent electron-proton transfer mechanisms. There are three possible pathways of PCET processes, including stepwise electron transfer followed by proton transfer (ETPT), proton transfer followed by electron transfer (PTET), and concerted pathway in which electron and proton transfer synchronously (CEPT), avoiding intermediates with high energy. These reactions have been playing a key role in numerous areas in organic chemistry, inorganic chemistry, bioorganic chemistry, organometallic and material chemistry, including the redox processes in natural and artificial systems, such as the activation for small molecules. Recently, the application of PCET reactions in organic synthesis has received a great deal of attentions and interests. Being accompanied by the development of electrochemical methods and photocatalysts, more and more novel reactions in electrochemistry and photochemistry involve PCET processes have been reported. Applying these electrochemical and photochemical methods, the activation of X—H bond has been achieved via PCET processes, including C—H bond, N—H bond, P—H bond, S—H bond or O—H bond. Thus, based on these crucial processes, a number of vital structures and fundamental frameworks can be synthesized, and various synthetic building blocks and natural products have been attained. For example, pharmaceutical building blocks like 2°-piperidines can be cyanated at their α-position; substituted dimeric pyrroloindolines such as (–)-calycanthidine, (–)-chimonanthine, and (–)-psychotriasine have also been successfully synthesized via PCET mechanism. Moreover, not only the products of reduction of multiple bonds (C=Y bond such as C=C bond, C=N bond and C=O bond), but also the products of self/cross-coupling have been achieved via PCET mechanism. In this review, the recent applications and developments of PCET mechanism in organic synthesis are summarized, including new catalyst systems and new reagents, especially with electrochemical and photochemical methodologies. The future of this area has also been demonstrated from both experimental and theoretical aspects.

Cite this article

Zijie Zhou , Xiangmei Kong , Tianfei Liu . Applications of Proton-Coupled Electron Transfer in Organic Synthesis[J]. Chinese Journal of Organic Chemistry, 2021 , 41(10) : 3844 -3879 . DOI: 10.6023/cjoc202106001

References

[1]
Hammes-Schiffer, S.; Iordanova, N. Biochim. Biophys. Acta 2004, 1655, 29.
[2]
Hammes-Schiffer, S. Acc. Chem. Res. 2009, 42, 1881.
[3]
Mayer, J. M. Annu. Rev. Phys. Chem. 2004, 55, 363.
[4]
Mayer, J. M.; Rhile, I. J. Biochim. Biophys. Acta 2004, 1655, 51.
[5]
Rhile, I. J.; Markle, T. F.; Nagao, H.; DiPasquale, A. G.; Lam, O. P.; Lockwood, M. A.; Rotter, K.; Mayer, J. M. J. Am. Chem. Soc. 2006, 128, 6075.
[6]
Tyburski, R.; Liu, T.; Glover, S. D.; Hammarström, L. J. Am. Chem. Soc. 2021, 143, 560.
[7]
Gentry, E. C.; Knowles, R. R. Acc. Chem. Res. 2016, 49, 1546.
[8]
Yang, J.-D.; Ji, P.; Xue, X.-S.; Cheng, J.-P. J. Am. Chem. Soc. 2018, 140, 8611.
[9]
Wu, X.; Zhu, C. Chin. J. Chem. 2019, 37, 171.
[10]
Symes, M. D.; Surendranath, Y.; Lutterman, D. A.; Nocera, D. G. J. Am. Chem. Soc. 2011, 133, 5174.
[11]
Guo, Y.; Liu, Y.; Qi, J.; Li, H.; He, L.; Lu, L.; Liu, C.; Gong, L.; Zhao, D.; Yang, Z. Acta Chim. Sinica 2017, 75, 914. (in Chinese)
[11]
(郭宇, 刘瑜, 戚娟娟, 李慧, 赫兰兰, 卢丽男, 刘翠, 宫利东, 赵东霞, 杨忠志, 化学学报, 2017, 75, 914.)
[12]
Odella, E.; Mora, S. J.; Wadsworth, B. L.; Huynh, M. T.; Goings, J. J.; Liddell, P. A.; Groy, T. L.; Gervaldo, M.; Sereno, L. E.; Gust, D.; Moore, T. A.; Moore, G. F.; Hammes-Schiffer, S.; Moore, A. L. J. Am. Chem. Soc. 2018, 140, 15450.
[13]
Liu, T.; Guo, M.; Orthaber, A.; Lomoth, R.; Lundberg, M.; Ott, S.; Hammarström, L. Nat. Chem. 2018, 10, 881.
[14]
Liu, T.; Tyburski, R.; Wang, S.; Fernandez-Teran, R.; Ott, S.; Hammarström, L. J. Am. Chem. Soc. 2019, 141, 17245.
[15]
Bourrez, M.; Steinmetz, R.; Ott, S.; Gloaguen, F.; Hammarström, L. Nat. Chem. 2015, 7, 140.
[16]
Jackson, M. N.; Pegis, M. L.; Surendranath, Y. ACS Cent. Sci. 2019, 5, 831.
[17]
Wenger, O. S. Chem.-Eur. J. 2011, 17, 11692.
[18]
Wenger, O. S. Acc. Chem. Res. 2013, 46, 1517.
[19]
Chen, Z.; Wang, T.; Sun, T.; Chen, Z.; Sheng, T.; Hong, Y.-H.; Nan, Z.-A.; Zhu, J.; Zhou, Z.-Y.; Xia, H.; Sun, S.-G. Chin. J. Chem. 2018, 36, 1161.
[20]
Binstead, R. A.; Moyer, B. A.; Samuels, G. J.; Meyer, T. J. J. Am. Chem. Soc. 1981, 103, 2897.
[21]
Liu, F.; Concepcion, J. J.; Jurss, J. W.; Cardolaccia, T.; Templeton, J. L.; Meyer, T. J. Inorg. Chem. 2008, 47, 1727.
[22]
Bonin, J.; Robert, M. Photochem. Photobiol. 2011, 87, 1190.
[23]
Hoffmann, N. Eur. J. Org. Chem. 2017, 2017, 1982.
[24]
Hammes-Schiffer, S.; Soudackov, A. V. J. Phys. Chem. B 2008, 112, 14108.
[25]
Sanderson, R. T. Polar Covalence, Academic Press, New York, 1983, p. 46.
[26]
Sanderson, R. T. Chemical Bonds and Bond Energy, Academic Press, New York, 1976, p. 185.
[27]
Marcus, R. A.; Sutin, N. Biochim. Biophys. Acta 1985, 811, 265.
[28]
Bolton, J. R.; Archer, M. D. In Electron Transfer in Inorganic, Organic, and Biological Systems, American Chemical Society, Washington, 1991, pp. 7-23.
[29]
Marcus, R. A. J. Chem. Phys. 1956, 24, 966.
[30]
Borgis, D.; Hynes, J. T. J. Phy. Chem. 1996, 100, 1118.
[31]
Krishtalik, L. I. Biochim. Biophys. Acta 2000, 1458, 6.
[32]
Soudackov, A.; Hammes-Schiffer, S. J. Chem. Phys. 1999, 111, 4672.
[33]
Soudackov, A.; Hammes-Schiffer, S. J. Chem. Phys. 2000, 113, 2385.
[34]
Hammes-Schiffer, S.; Stuchebrukhov, A. A. Chem. Rev. 2010, 110, 6939.
[35]
Huynh, M. H. V.; Meyer, T. J. Chem. Rev. 2007, 107, 5004.
[36]
Warren, J. J.; Tronic, T. A.; Mayer, J. M. Chem. Rev. 2010, 110, 6961.
[37]
Weinberg, D. R.; Gagliardi, C. J.; Hull, J. F.; Murphy, C. F.; Kent, C. A.; Westlake, B. C.; Paul, A.; Ess, D. H.; McCafferty, D. G.; Meyer, T. J. Chem. Rev. 2012, 112, 4016.
[38]
Waidmann, C. R.; Miller, A. J. M.; Ng, C.-W. A.; Scheuermann, M. L.; Porter, T. R.; Tronic, T. A.; Mayer, J. M. Energy Environ. Sci. 2012, 5, 7771.
[39]
Darcy, J. W.; Koronkiewicz, B.; Parada, G. A.; Mayer, J. M. Acc. Chem. Res. 2018, 51, 2391.
[40]
Morton, C. M.; Zhu, Q.; Ripberger, H.; Troian-Gautier, L.; Toa, Z. S. D.; Knowles, R. R.; Alexanian, E. J. J. Am. Chem. Soc. 2019, 141, 13253.
[41]
Tarantino, K. T.; Liu, P.; Knowles, R. R. J. Am. Chem. Soc. 2013, 135, 10022.
[42]
Skone, J. H.; Soudackov, A. V.; Hammes-Schiffer, S. J. Am. Chem. Soc. 2006, 128, 16655.
[43]
Liu, T.; Tyburski, R.; Wang, S.; Fernández-Terán, R.; Ott, S.; Hammarström, L. J. Am. Chem. Soc. 2019, 141, 17245.
[44]
Huang, T.; Rountree, E. S.; Traywick, A. P.; Bayoumi, M.; Dempsey, J. L. J. Am. Chem. Soc. 2018, 140, 14655.
[45]
Darcy, J. W.; Kolmar, S. S.; Mayer, J. M. J. Am. Chem. Soc. 2019, 141, 10777.
[46]
Zhang, J.; Yang, J.-D.; Cheng, J.-P. Chem. Sci. 2020, 11, 3672.
[47]
Chen, X.; Engle, K. M.; Wang, D. H.; Yu, J. Q. Angew. Chem., Int. Ed. 2009, 48, 5094.
[48]
Giri, R.; Shi, B. F.; Engle, K. M.; Maugel, N.; Yu, J. Q. Chem. Soc. Rev. 2009, 38, 3242.
[49]
Engle, K. M.; Mei, T.-S.; Wasa, M.; Yu, J.-Q. Acc. Chem. Res. 2012, 45, 788.
[50]
Sun, C. L.; Li, B. J.; Shi, Z. J. Chem. Rev. 2011, 111, 1293.
[51]
Markle, T. F.; Darcy, J. W.; Mayer, J. M. Sci. Adv. 2018, 4, eaat5776.
[52]
Sayfutyarova, E. R.; Goldsmith, Z. K.; Hammes-Schiffer, S. J. Am. Chem. Soc. 2018, 140, 15641.
[53]
Sayfutyarova, E. R.; Lam, Y. C.; Hammes-Schiffer, S. J. Am. Chem. Soc. 2019, 141, 15183.
[54]
Uraguchi, D.; Torii, M.; Ooi, T. ACS Catal. 2017, 7, 2765.
[55]
Shevchenko, G. A.; Oppelaar, B.; List, B. Angew. Chem., Int. Ed. 2018, 57, 10756.
[56]
Leng, L.; Ready, J. M. ACS Catal. 2020, 10, 13196.
[57]
Wu, Z. J.; Xu, H. C. Angew. Chem., Int. Ed. 2017, 56, 4734.
[58]
Lennox, A. J. J.; Goes, S. L.; Webster, M. P.; Koolman, H. F.; Djuric, S. W.; Stahl, S. S. J. Am. Chem. Soc. 2018, 140, 11227.
[59]
Zhang, Z.; Zhang, L.; Cao, Y.; Li, F.; Bai, G.; Liu, G.; Yang, Y.; Mo, F. Org. Lett. 2019, 21, 762.
[60]
Sharma, S.; Roy, A.; Shaw, K.; Bisai, A.; Paul, A. J. Org. Chem. 2020, 85, 14926.
[61]
He, M. X.; Mo, Z. Y.; Wang, Z. Q.; Cheng, S. Y.; Xie, R. R.; Tang, H. T.; Pan, Y. M. Org. Lett. 2020, 22, 724.
[62]
Tanwar, L.; Borgel, J.; Ritter, T. J. Am. Chem. Soc. 2019, 141, 17983.
[63]
Wang, Z.; Liu, Q.; Ji, X.; Deng, G.-J.; Huang, H. ACS Catal. 2019, 10, 154.
[64]
Wu, Y.; Chen, J.-Y.; Ning, J.; Jiang, X.; Deng, J.; Deng, Y.; Xu, R.; He, W.-M. Green Chem. 2021, 23, 3950.
[65]
Peng, S.; Lin, Y.; He, W.-M. Chin. J. Org. Chem. 2020, 40, 541. (in Chinese)
[65]
(彭莎, 林英武, 何卫民, 有机化学, 2020, 40, 541.)
[66]
Luo, Y. R. Handbook of Bond Dissociation Energies in Organic Compounds, CRC Press, Boca Raton, 2003.
[67]
Choi, G. J.; Knowles, R. R. J. Am. Chem. Soc. 2015, 137, 9226.
[68]
Miller, D. C.; Choi, G. J.; Orbe, H. S.; Knowles, R. R. J. Am. Chem. Soc. 2015, 137, 13492.
[69]
Tarantino, K. T.; Miller, D. C.; Callon, T. A.; Knowles, R. R. J. Am. Chem. Soc. 2015, 137, 6440.
[70]
Choi, G. J.; Zhu, Q.; Miller, D. C.; Gu, C. J.; Knowles, R. R. Nature 2016, 539, 268.
[71]
Gentry, E. C.; Rono, L. J.; Hale, M. E.; Matsuura, R.; Knowles, R. R. J. Am. Chem. Soc. 2018, 140, 3394.
[72]
Zhu, Q.; Graff, D. E.; Knowles, R. R. J. Am. Chem. Soc. 2018, 140, 741.
[73]
Nguyen, S. T.; Zhu, Q.; Knowles, R. R. ACS Catal. 2019, 9, 4502.
[74]
Roos, C. B.; Demaerel, J.; Graff, D. E.; Knowles, R. R. J. Am. Chem. Soc. 2020, 142, 5974.
[75]
Zhou, Z.; Li, Y.; Han, B.; Gong, L.; Meggers, E. Chem. Sci. 2017, 8, 5757.
[76]
Yuan, W.; Zhou, Z.; Gong, L.; Meggers, E. Chem. Commun. 2017, 53, 8964.
[77]
Jia, J.; Ho, Y. A.; Bulow, R. F.; Rueping, M. Chem.-Eur. J. 2018, 24, 14054.
[78]
Moon, Y.; Jang, E.; Choi, S.; Hong, S. Org. Lett. 2018, 20, 240.
[79]
Zheng, S.; Gutierrez-Bonet, A.; Molander, G. A. Chem 2019, 5, 339.
[80]
Zhou, C.; Lei, T.; Wei, X. Z.; Ye, C.; Liu, Z.; Chen, B.; Tung, C. H.; Wu, L. Z. J. Am. Chem. Soc. 2020, 142, 16805.
[81]
Zhu, L.; Xiong, P.; Mao, Z. Y.; Wang, Y. H.; Yan, X.; Lu, X.; Xu, H. C. Angew. Chem., Int. Ed. 2016, 55, 2226.
[82]
Xiong, P.; Xu, H. H.; Xu, H. C. J. Am. Chem. Soc. 2017, 139, 2956.
[83]
Hu, X.; Zhang, G.; Bu, F.; Nie, L.; Lei, A. ACS Catal. 2018, 8, 9370.
[84]
Wang, F.; Gerken, J. B.; Bates, D. M.; Kim, Y. J.; Stahl, S. S. J. Am. Chem. Soc. 2020, 142, 12349.
[85]
Xu, Z.; Huang, Z.; Li, Y.; Kuniyil, R.; Zhang, C.; Ackermann, L.; Ruan, Z. Green Chem. 2020, 22, 1099.
[86]
Taylor, R. J. K.; Reid, M.; Foot, J.; Raw, S. A. Acc. Chem. Res. 2005, 38, 851.
[87]
Uyanik, M.; Ishihara, K. Chem. Commun. 2009, 2086.
[88]
Ciriminna, R.; Pagliaro, M. Org. Process Res. Dev. 2010, 14, 245-251.
[89]
Hoover, J. M.; Stahl, S. S. J. Am. Chem. Soc. 2011, 133, 16901.
[90]
Greene, J. F.; Hoover, J. M.; Mannel, D. S.; Root, T. W.; Stahl, S. S. Org. Process Res. Dev. 2013, 17, 1247.
[91]
Rahimi, A.; Azarpira, A.; Kim, H.; Ralph, J.; Stahl, S. S. J. Am. Chem. Soc. 2013, 135, 6415.
[92]
Steves, J. E.; Preger, Y.; Martinelli, J. R.; Welch, C. J.; Root, T. W.; Hawkins, J. M.; Stahl, S. S. Org. Process Res. Dev. 2015, 19, 1548.
[93]
Rafiee, M.; Konz, Z. M.; Graaf, M. D.; Koolman, H. F.; Stahl, S. S. ACS Catal. 2018, 8, 6738.
[94]
Rafiee, M.; Alherech, M.; Karlen, S. D.; Stahl, S. S. J. Am. Chem. Soc. 2019, 141, 15266.
[95]
Ota, E.; Wang, H.; Frye, N. L.; Knowles, R. R. J. Am. Chem. Soc. 2019, 141, 1457.
[96]
Zhao, K.; Yamashita, K.; Carpenter, J. E.; Sherwood, T. C.; Ewing, W. R.; Cheng, P. T. W.; Knowles, R. R. J. Am. Chem. Soc. 2019, 141, 8752.
[97]
Nguyen, S. T.; Murray, P. R. D.; Knowles, R. R. ACS Catal. 2019, 10, 800.
[98]
Huang, L.; Ji, T.; Rueping, M. J. Am. Chem. Soc. 2020, 142, 3532.
[99]
Tsui, E.; Metrano, A. J.; Tsuchiya, Y.; Knowles, R. R. Angew. Chem., Int. Ed. 2020, 59, 11845.
[100]
Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029.
[101]
Piou, T.; Rovis, T. Nature 2015, 527, 86.
[102]
Bayeh, L.; Le, P. Q.; Tambar, U. K. Nature 2017, 547, 196.
[103]
Koh, M. J.; Nguyen, T. T.; Lam, J. K.; Torker, S.; Hyvl, J.; Schrock, R. R.; Hoveyda, A. H. Nature 2017, 542, 80.
[104]
Alonso, F.; Beletskaya, I. P.; Yus, M. Chem. Rev. 2004, 104, 3079.
[105]
Xi, Y.; Dong, B.; McClain, E. J.; Wang, Q.; Gregg, T. L.; Akhmedov, N. G.; Petersen, J. L.; Shi, X. Angew. Chem., Int. Ed. 2014, 53, 4657.
[106]
Hopkinson, M. N.; Tlahuext-Aca, A.; Glorius, F. Acc. Chem. Res. 2016, 49, 2261.
[107]
Patel, M.; Saunthwal, R. K.; Verma, A. K. Acc. Chem. Res. 2017, 50, 240.
[108]
Wang, J.; Zhang, S.; Xu, C.; Wojtas, L.; Akhmedov, N. G.; Chen, H.; Shi, X. Angew. Chem., Int. Ed. 2018, 57, 6915.
[109]
Wang, H.; Li, Y.; Tang, Z.; Wang, S.; Zhang, H.; Cong, H.; Lei, A. ACS Catal. 2018, 8, 10599.
[110]
Liu, Y.; Chen, X. L.; Li, X. Y.; Zhu, S. S.; Li, S. J.; Song, Y.; Qu, L. B.; Yu, B. J. Am. Chem. Soc. 2021, 143, 964.
[111]
Kuss-Petermann, M.; Wenger, O. S. J. Phys. Chem. Lett. 2013, 4, 2535.
[112]
Griesbaum, K. Angew. Chem., Int. Ed. 1970, 9, 273.
[113]
Heiba, E.-A. I.; Dessau, R. M. J. Org. Chem. 1967, 32, 3837.
[114]
Huyser, E. S.; Kellogg, R. M. J. Org. Chem. 1966, 31, 3366.
[115]
Zhao, R.; Lind, J.; Merenyi, G.; Eriksen, T. E. J. Am. Chem. Soc. 1994, 116, 12010.
[116]
Dang, H.-S.; Roberts, B. P. Tetrahedron Lett. 1999, 40, 8929.
[117]
Fujisawa, H.; Hayakawa, Y.; Sasaki, Y.; Mukaiyama, T. Chem. Lett. 2001, 30, 632.
[118]
Benati, L.; Leardini, R.; Minozzi, M.; Nanni, D.; Scialpi, R.; Spagnolo, P.; Strazzari, S.; Zanardi, G. Angew. Chem., Int. Ed. 2004, 43, 3598.
[119]
Kemper, J.; Studer, A. Angew. Chem., Int. Ed. 2005, 44, 4914.
[120]
Dénès, F.; Pichowicz, M.; Povie, G.; Renaud, P. Chem. Rev. 2014, 114 2587.
[121]
Qvortrup, K.; Rankic, D. A.; MacMillan, D. W. J. Am. Chem. Soc. 2014, 136, 626.
[122]
Hager, D.; MacMillan, D. W. J. Am. Chem. Soc. 2014, 136, 16986.
[123]
Tyson, E. L.; Niemeyer, Z. L.; Yoon, T. P. J. Org. Chem. 2014, 79, 1427.
[124]
He, W.-B.; Gao, L.-Q.; Chen, X.-J.; Wu, Z.-L.; Huang, Y.; Cao, Z.; Xu, X.-H.; He, W.-M. Chin. Chem. Lett. 2020, 31, 1895.
[125]
Li, J.; Gu, Z.; Zhao, X.; Qiao, B.; Jiang, Z. Chem. Commun. 2019, 55, 12916.
[126]
Liu, X.; Yin, Y.; Jiang, Z. Chem. Commun. 2019, 55, 11527.
[127]
Yang, H.; Wei, G.; Jiang, Z. ACS Catal. 2019, 9, 9599.
[128]
Zeng, G.; Li, Y.; Qiao, B.; Zhao, X.; Jiang, Z. Chem. Commun. 2019, 55, 11362.
[129]
Shi, J.; Wei, W. Chin. J. Org. Chem. 2020, 40, 2170. (in Chinese)
[129]
(时建伟, 魏伟, 有机化学, 2020, 40 2170.)
[130]
Prasanna, R.; Guha, S.; Sekar, G. Org. Lett. 2019, 21, 2650.
[131]
Kong, M.; Tan, Y.; Zhao, X.; Qiao, B.; Tan, C. H.; Cao, S.; Jiang, Z. J. Am. Chem. Soc. 2021, 143, 4024.
[132]
Li, J.; He, L.; Liu, X.; Cheng, X.; Li, G. Angew. Chem., Int. Ed. 2019, 58, 1759.
[133]
Zimmerman, H. E. Acc. Chem. Res. 2012, 45, 164.
[134]
Benkeser, R. A.; Kaiser, E. M. J. Am. Chem. Soc. 1963, 85, 2858.
[135]
Swenson, K. E.; Zemach, D.; Nanjundiah, C.; Kariv-Miller, E. J. Org. Chem. 1983, 48, 1777.
[136]
Chaussard, J.; Combellas, C.; Thiebault, A. Tetrahedron Lett. 1987, 28, 1173.
[137]
Zhou, F.; Jehoulet, C.; Bard, A. J. J. Am. Chem. Soc. 1992, 114, 11004.
[138]
Ishifune, M.; Yamashita, H.; Kera, Y.; Yamashita, N.; Hirata, K.; Murase, H.; Kashimura, S. Electrochim. Acta 2003, 48, 2405.
[139]
Peters, B. K.; Rodriguez, K. X.; Reisberg, S. H.; Beil, S. B.; Hickey, D. P.; Kawamata, Y.; Collins, M.; Starr, J.; Chen, L.; Udyavara, S.; Klunder, K.; Gorey, T. J.; Anderson, S. L.; Neurock, M.; Minteer, S. D.; Baran, P. S. Science 2019, 363, 838.
[140]
Qin, Y.; Lu, J.; Zou, Z.; Hong, H.; Li, Y.; Li, Y.; Chen, L.; Hu, J.; Huang, Y. Org. Chem. Front. 2020, 7, 1817.
[141]
Liu, X.; Liu, R.; Qiu, J.; Cheng, X.; Li, G. Angew. Chem., Int. Ed. 2020, 59, 13962.
[142]
Rossolini, T.; Leitch, J. A.; Grainger, R.; Dixon, D. J. Org. Lett. 2018, 20, 6794.
[143]
Vasu, D.; Fuentes de Arriba, A. L.; Leitch, J. A.; de Gombert, A.; Dixon, D. J. Chem. Sci. 2019, 10, 3401.
[144]
Nicastri, M. C.; Lehnherr, D.; Lam, Y. H.; DiRocco, D. A.; Rovis, T. J. Am. Chem. Soc. 2020, 142, 987.
[145]
Lehnherr, D.; Lam, Y. H.; Nicastri, M. C.; Liu, J.; Newman, J. A.; Regalado, E. L.; DiRocco, D. A.; Rovis, T. J. Am. Chem. Soc. 2020, 142, 468.
[146]
Chen, M.; Zhao, X.; Yang, C.; Xia, W. Org. Lett. 2017, 19, 3807.
[147]
Cao, K.; Tan, S. M.; Lee, R.; Yang, S.; Jia, H.; Zhao, X.; Qiao, B.; Jiang, Z. J. Am. Chem. Soc. 2019, 141, 5437.
[148]
Huang, B.; Li, Y.; Yang, C.; Xia, W. Chem. Commun. 2019, 55, 6731.
[149]
Nageswar Rao, D.; Rasheed, S.; Raina, G.; Ahmed, Q. N.; Jaladanki, C. K.; Bharatam, P. V.; Das, P. J. Org. Chem. 2017, 82, 7234.
[150]
Zhang, G.; Fu, L.; Chen, P.; Zou, J.; Liu, G. Org. Lett. 2019, 21, 5015.
[151]
Li, H; Zhang, M. T. Angew. Chem., Int. Ed. 2016, 55, 13132.
[152]
Schrauben, J. N.; Cattaneo, M.; Day, T. C.; Tenderholt, A. L.; Mayer, J. M. J. Am. Chem. Soc. 2012, 134, 16635.
[153]
Sirimanne, C. T.; Kerrigan, M. M.; Martin, P. D.; Kanjolia, R. K.; Elliott, S. D.; Winter, C. H. Inorg. Chem. 2015, 54, 7.
[154]
Canteenwala, T.; Padmawar, P. A.; Chiang, L. Y. J. Am. Chem. Soc. 2005, 127, 26.
[155]
Irebo, T.; Reece, S. Y.; Sjödin, M.; Nocera, D. G.; Hammarström, L. J. Am. Chem. Soc. 2007, 129, 15462.
[156]
Pizano, A. A.; Yang, J. L.; Nocera, D. G. Chem. Sci. 2012, 3, 2457.
[157]
Kuss-Petermann, M.; Wolf, H.; Stalke, D.; Wenger, O. S. J. Am. Chem. Soc. 2012, 134, 12844.
[158]
Kuss-Petermann, M.; Wenger, O. S. J. Phys. Chem. A 2013, 117, 5726.
[159]
Chen, J.; Kuss-Petermann, M.; Wenger, O. S. Chem.-Eur. J. 2014, 20, 4098.
[160]
Bronner, C.; Wenger, O. S. Phys. Chem. Chem. Phys. 2014, 16 3617.
[161]
Bowring, M. A.; Bradshaw, L. R.; Parada, G. A.; Pollock, T. P.; Fernández-Terán, R. J.; Kolmar, S. S.; Mercado, B. Q.; Schlenker, C. W.; Gamelin, D. R.; Mayer, J. M. J. Am. Chem. Soc. 2018, 140, 7449.
[162]
Sayfutyarova, E. R.; Hammes-Schiffer, S. J. Phys. Chem. Lett. 2020, 11, 7109.
[163]
Eisenhart, T. T.; Dempsey, J. L. J. Am. Chem. Soc. 2014, 136, 12221.
[164]
Swords, W. B.; Meyer, G. J.; Hammarström, L. Chem. Sci. 2020, 11, 3460.
[165]
Lennox, J. C.; Kurtz, D. A.; Huang, T.; Dempsey, J. L. ACS Energy Lett. 2017, 2, 1246.
[166]
Parada, G. A.; Goldsmith, Z. K.; Kolmar, S.; Pettersson Rimgard, B.; Mercado, B. Q.; Hammarström, L.; Hammes-Schiffer, S.; Mayer, J. M. Science 2019, 364, 471.
[167]
Guo, J. D.; Yang, X. L.; Chen, B.; Tung, C. H.; Wu, L. Z. Org. Lett. 2020, 22, 9627.
[168]
Lei, T.; Liang, G.; Cheng, Y. Y.; Chen, B.; Tung, C. H.; Wu, L. Z. Org. Lett. 2020, 22, 5385.
[169]
Wang, J. H.; Li, X. B.; Li, J.; Lei, T.; Wu, H. L.; Nan, X. L.; Tung, C. H.; Wu, L. Z. Chem. Commun. 2019, 55, 10376.
[170]
Wang, J. H.; Lei, T.; Nan, X. L.; Wu, H. L.; Li, X. B.; Chen, B.; Tung, C. H.; Wu, L. Z. Org. Lett. 2019, 21, 5581.
[171]
Huang, C.; Wang, J. H.; Qiao, J.; Fan, X. W.; Chen, B.; Tung, C. H.; Wu, L. Z. J. Org. Chem. 2019, 84, 12904.
[172]
Li, H.; Guo, Y. H.; Wu, J. Y.; Zhang, M. T. Chem. Commun. 2019, 55, 3465.
[173]
Chen, J.; Chen, J.; Liu, Y.; Zheng, Y.; Zhu, Q.; Han, G.; Shen, J.-R. J. Phys. Chem. Lett. 2019, 10, 3240.
[174]
Ren, X.; Wang, X.; Sun, Y.; Chi, X.; Mangel, D.; Wang, H.; Sessler, J. L. Org. Chem. Front. 2019, 6, 584.
[175]
Lin, Y.; Yan, Y.; Peng, W.; Qiao, X.; Huang, D.; Ji, H.; Chen, C.; Ma, W.; Zhao, J. J. Phys. Chem. Lett. 2020, 11, 3941.
[176]
Zhang, X.; Ma, J.; Li, S.; Li, M.-D.; Guan, X.; Lan, X.; Zhu, R.; Phillips, D. L. J. Org. Chem. 2016, 81, 5330.
[177]
Xu, Y.; Bao, P.; Song, K.; Shi, Q. J. Comput. Chem. 2019, 40, 1005.
[178]
Zhong, W.; Wu, L.; Jiang, W.; Li, Y.; Mookan, N.; Liu, X. Dalton Trans. 2019, 48, 13711.
[179]
Giret, Y.; Guo, P.; Wang, L.-F.; Cheng, J. J. Chem. Phys. 2020, 152, 124705.
[180]
Song, K.; Shi, Q. J. Chem. Phys. 2017, 146, 184108.
Outlines

/