Chinese Journal of Organic Chemistry >
Recent Advances in C—H Bond Functionalization under Mechanochemical Conditions
Received date: 2021-06-24
Revised date: 2021-08-10
Online published: 2021-08-25
Supported by
National Key Research and Development Program(2017YFB0307203)
Mechanochemistry has received increasing attention in the past decade. Among which, the mechanochemical C—H bond functionalization has emerged as a hot research topic. In comparison with the traditional solution-based organic reactions, the mechanochemical transformation features solvent-less conditions and short reaction time, constituting a green and efficient synthetic method in the modern chemical society. Notably, given the outstanding features, some long-standing challenges in the previous solution-based reactions could be well-solved by mechanochemical methods. Therefore, a timely comprehensive overview to recognize the present status of the mechanochemical C—H bond functionalization is of great importance to stimulate the development of more efficient synthetic methods. In this review, the state of the art for mechanochemical C—H bond transformation is presented. The limitation in this research field is also analyzed and the outlook of this area is prospected.
Kun Zhou , Yangjie Mao , Fengwei Wu , Shaojie Lou , Danqian Xu . Recent Advances in C—H Bond Functionalization under Mechanochemical Conditions[J]. Chinese Journal of Organic Chemistry, 2021 , 41(12) : 4623 -4638 . DOI: 10.6023/cjoc202106046
[1] | Boldyreva, E. Chem. Soc. Rev. 2013, 42, 7719. |
[2] | (a) Fu, Z. Eng. Chem. Metall. 1988, 9, 61. (in Chinese) |
[2] | ( 傅正义, 化工冶金, 1988, 9, 61.) |
[2] | (b) Ma, Z.; Li, H.; Zhang, Z.; Ma, Y. Non-Ferrous Min. Metall. 2004, 20, 98. (in Chinese) |
[2] | ( 马正先, 李慧, 张在美, 马云东, 有色矿治, 2004, 20, 98.) |
[2] | (c) Rong, H.; Fang, Y. Guangdong Chem. Ind. 2006, 33, 33. (in Chinese) |
[2] | ( 荣华伟, 方莹, 广东化工, 2006, 33, 33.) |
[2] | (d) Zhang, S. Y.; Geng, M. P. Yunnan Metall. 2006, 35, 46. (in Chinese) |
[2] | ( 张颂阳, 耿茂鹏, 云南冶金, 2006, 35, 46.) |
[3] | (a) Peters, K. Frankfurt 1962, 31. |
[3] | (b) Zhang, W.; Wang, S. Min. Proc. Equip. 2003, 8, 50. (in Chinese) |
[3] | 张伟, 王树林, 矿山机械, 2003, 8, 50). |
[3] | (c) LI, L.; Chen, G. China Ceram. Ind. 2003, 10, 52. (in Chinese) |
[3] | ( 李玲, 陈国华, 中国陶瓷工业, 2003, 10, 52.) |
[3] | (d) Yin, Y.; Chen, Y. Metall. Collect. 2008, 178, 37. (in Chinese) |
[3] | ( 尹艳红, 陈应禄, 冶金丛刊, 2008, 178, 37.) |
[3] | (e) Xu, H.; Wang, F.; Xie, Y. New Chem. Mater. 2009, 37, 7. (in Chinese) |
[3] | ( 许红娅, 王芬, 解宇星, 化工新型材料, 2009, 37, 7.) |
[3] | (f) Fang, G.; Shen, K.; Li, X. China Pulp Paper 2020, 39, 55. (in Chinese) |
[3] | ( 房桂干, 沈葵忠, 李晓亮, 中国造纸, 2020, 39, 55.) |
[4] | (a) Gilman, J. J. Science 1996, 274, 65. |
[4] | (b) Hickenboth, C. R.; Moore, J. S.; White, S. R.; Sottos, N. R.; Baudry, J.; Wilson, S. R. Nature 2007, 446, 423. |
[4] | (c) Caruso, M. M.; Davis, D. A.; Shen, Z.; Odom, S. A.; Sottos, N. R.; White, S. R.; Moore, J. S. Chem. Rev. 2009, 109, 5755. |
[4] | (d) Belenguer, A. M.; Friščić, T.; Day, G. M.; Sanders, J. K. M. Chem. Sci. 2011, 2, 696. |
[4] | (e) James, S. L.; Adams, C. J.; Bolm, C.; Braga, D.; Collier, P.; Friscic, T.; Grepioni, F.; Harris, K. D.; Hyett, G.; Jones, W.; Krebs, A.; Mack, J.; Maini, L.; Orpen, A. G.; Parkin, I. P.; Shearouse, W. C.; Steed, J. W.; Waddell, D. C. Chem. Soc. Rev. 2012, 41, 413. |
[4] | (f) Hernandez, J. G.; Bolm, C. J. Org. Chem. 2017, 82, 4007. |
[4] | (g) Andersen, J. M.; Mack, J. Chem. Sci. 2017, 8, 5447. |
[4] | (h) Bolm, C.; Hernandez, J. G. ChemSusChem 2018, 11, 1410. |
[4] | (i) Howard, J. L.; Brand, M. C.; Browne, D. L. Angew. Chem., Int. Ed. 2018, 57, 16104. |
[4] | (j) Howard, J. L.; Cao, Q.; Browne, D. L. Chem. Sci. 2018, 9, 3080. |
[4] | (k) Andersen, J.; Mack, J. Green Chem. 2018, 20, 1435. |
[4] | (l) Beillard, A.; Bantreil, X.; Metro, T. X.; Martinez, J.; Lamaty, F. Chem. Rev. 2019, 119, 7529. |
[4] | (m) Colacino, E.; Porcheddu, A.; Charnay, C.; Delogu, F. React. Chem. Eng. 2019, 4, 1179. |
[4] | (n) Friscic, T.; Mottillo, C.; Titi, H. M. Angew. Chem., Int. Ed. 2020, 59, 1018. |
[4] | (o) Wang, G.-W. Chin. J. Chem. 2021, 39, 1797. |
[5] | (a) Zhu, S. E.; Li, F.; Wang, G.-W. Chem. Soc. Rev. 2013, 42, 7535. |
[5] | (b) Wang, G.-W. Chem. Soc. Rev. 2013, 42, 7668. |
[5] | (c) Wang, N. N.; Wang, G.-W. Prog. Chem. 2020, 32, 1076. (in Chinese) |
[5] | ( 王娜娜, 王官武, 化学进展, 2020, 32, 1076). |
[5] | (d) Kubota, K.; Ito, H. Trends Chem. 2020, 2, 1066. |
[5] | (e) Wang, H.; Ying, P.; Yu, J.; Su, W. Chin. J. Org. Chem. 2021, 41, 1897. (in Chinese) |
[5] | ( 王浩, 应娉, 俞静波, 苏为科, 有机化学, 2021, 41, 1897.) |
[6] | (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457. |
[6] | (b) Nielsen, S. F.; Peters, D.; Axelsson, O. Synth. Commun. 2000, 30, 3501. |
[7] | (a) Shao, Q.; Jiang, Z.; Su, W. Tetrahedron Lett. 2018, 59, 2277. |
[7] | (b) Cao, Q.; Nicholson, W. I.; Jones, A. C.; Browne, D. L. Org. Biomol. Chem. 2019, 17, 1722. |
[8] | Tullberg, E.; Peters, D.; Frejd, T. J. Org. Chem. 2004, 689, 3778. |
[9] | Fulmer, D. A.; Shearouse, W. C.; Medonza, S. T.; Mack, J. Green Chem. 2009, 11, 1821. |
[10] | (a) Labinger, J. A.; Bercaw, J. E. Nature 2002, 417, 507. |
[10] | (b) Godula, K.; Sames, D. Science 2006, 312, 67. |
[10] | (c) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147. |
[10] | (d) Ackermann, L. Chem. Rev. 2011, 111, 1315. |
[10] | (e) Baudoin, O. Chem. Soc. Rev. 2011, 40, 4902. |
[10] | (f) Engle, K. M.; Mei, T. S.; Wang, X.; Yu, J.-Q. Angew. Chem., Int. Ed. 2011, 50, 1478. |
[10] | (g) Davies, H. M. L.; Bois, J. D.; Yu, J.-Q. Chem. Soc. Rev. 2011, 40, 1976. |
[10] | (h) McDonald, R. I.; Liu, G.; Stahl, S. S. Chem. Rev. 2011, 111, 2981. |
[11] | (a) Hernandez, J. G. Chemistry 2017, 23, 17157. |
[11] | (b) Lukin, S.; Tireli, M.; Loncaric, I.; Barisic, D.; Sket, P.; Vrsaljko, D.; di Michiel, M.; Plavec, J.; K, U. Z.; Halasz, I. Chem. Commun. 2018, 54, 13216. |
[11] | (c) Zhao, S.; Li, Y.; Liu, C.; Zhao, Y. Tetrahedron Lett. 2018, 59, 317. |
[12] | Juribasic, M.; Uzarevic, K.; Gracin, D.; Curic, M. Chem. Commun. 2014, 50, 10287. |
[13] | Ingner, F. J. L.; Giustra, Z. X.; Novosedlik, S.; Orthaber, A.; Gates, P. J.; Dyrager, C.; Pilarski, L. T. Green Chem. 2020, 22, 5648. |
[14] | Hermann, G. N.; Becker, P.; Bolm, C. Angew. Chem., Int. Ed. 2015, 54, 7414. |
[15] | (a) Patureau, F. W.; Glorius, F. J. Am. Chem. Soc. 2010, 132, 9982; |
[15] | (b) Yu, S.; Li, X. Org. Lett. 2014, 16, 1200. |
[16] | Jia, K.; Yu, J.; Jiang, Z.; Su, W. J. Org. Chem. 2016, 81, 6049. |
[17] | Jia, K.; Jiang, Z.; Yu, J.; Hong, Z.; Su, W. Chin. J. Org. Chem. 2017, 37, 1473. (in Chinese) |
[17] | ( 贾侃彦, 江之江, 俞静波, 洪子坤, 苏为科, 有机化学, 2017, 37, 1473.) |
[18] | Yu, J.; Yang, X.; Wu, C.; Su, W. J. Org. Chem. 2020, 85, 1009. |
[19] | Sampson, P. B.; Liu, Y.; Patel, N. K.; Feher, M.; Forrest, B.; Li, S.-W.; Edwards, L.; Laufer, R.; Lang, Y.; Ban, F.; Awrey, D. E.; Mao, G.; Plotnikova, O.; Leung, G.; Hodgson, R.; Mason, J.; Wei, X.; Kiarash, R.; Green, E.; Qiu, W.; Chirgadze, N. Y.; Mak, T. W.; Pan, G.; Pauls, H. W. J. Med. Chem. 2014, 58, 130. |
[20] | Tang, M.; Kong, Y.; Chu, B.; Feng, D. Adv. Synth. Catal. 2016, 358, 926. |
[21] | Das, D.; Bhosle, A. A.; Panjikar, P. C.; Chatterjee, A.; Banerjee, M. ACS Sustainable Chem. Eng. 2021, 8, 19105 |
[22] | (a) Nakao, Y.; Kanyiva, K. S.; Oda, S.; Hiyama, T. J. Am. Chem. Soc. 2006, 128, 8146. |
[22] | (b) Ding, Z.; Yoshikai, N. Angew. Chem., Int Ed. 2012, 51, 4698. |
[22] | (c) Sharma, S.; Han, S.; Shin, Y.; Mishra, N. K.; Oh, H.; Park, J.; Kwak, J. H.; Shin, B. S.; Jung, Y. H.; Kim, I. S. Tetrahedron Lett. 2014, 55, 3104. |
[22] | (d) Liang, L.; Fu, S.; Lin, D.; Zhang, X. Q.; Deng, Y.; Jiang, H.; Zeng, W. J. Org. Chem. 2014, 79, 9472. |
[22] | (e) Shi, L.; Zhong, X.; She, H.; Lei, Z.; Li, F. Chem. Commun. 2015, 51, 7136. |
[23] | Hermann, G. N.; Unruh, M. T.; Jung, S. H.; Krings, M.; Bolm, C. Angew. Chem., Int. Ed. 2018, 57, 10723. |
[24] | (a) Zhdankin, V. V.; Kuehl, C. J.; Krasutsky, A. P.; Bolz, J. T.; Simonsen, A. J. J. Org. Chem. 1996, 61, 6547. |
[24] | (b) Brand, J. P.; Charpentier, J.; Waser, J. Angew. Chem., Int. Ed. 2009, 48, 9346. |
[24] | (c) Collins, K. D.; Lied, F.; Glorius, F. Chem. Commun. 2014, 50, 4459. |
[24] | (d) Feng, C.; Loh, T. P. Angew. Chem., Int. Ed. 2014, 53, 2722. |
[24] | (e) Xie, F.; Qi, Z.; Yu, S.; Li, X. J. Am. Chem. Soc. 2014, 136, 4780. |
[24] | (f) Zhang, Z. Z.; Liu, B.; Wang, C. Y.; Shi, B. F. Org. Lett. 2015, 17, 4094. |
[24] | (g) Kang, D.; Hong, S. Org. Lett. 2015, 17, 1938. |
[24] | (h) Caspers, L. D.; Finkbeiner, P.; Nachtsheim, B. J. Chemistry 2017, 23, 2748. |
[25] | (a) Wang, X.; Leow, D.; Yu, J.-Q. J. Am. Chem. Soc. 2011, 133, 13864. |
[25] | (b) Xu, H.; Shang, M.; Dai, H. X.; Yu, J.-Q. Org. Lett. 2015, 17, 3830. |
[25] | (c) Yang, Z.; Qiu, F. C.; Gao, J.; Li, Z. W.; Guan, B. T. Org. Lett. 2015, 17, 4316. |
[26] | Lou, S.-J.; Mao, Y.-J.; Xu, D.-Q.; He, J.-Q.; Chen, Q.; Xu, Z.-Y. ACS Catal. 2016, 6, 3890. |
[27] | Das, D.; Bhutia, Z. T.; Chatterjee, A.; Banerjee, M. J. Org. Chem. 2019, 84, 10764. |
[28] | (a) Bosch, J.; Roca, Tomas; Armengol, M.; FernaÂndez-Forner, D. Tetrahedron 2001, 57, 1041. |
[28] | (b) Dinnell, K.; Chicchi, G. G.; Dhar, M. J.; Elliott, J. M.; Hollingworth, G. J.; Kurtz, M. M.; Ridgill, M. P.; Rycroft, W.; Tsao, K. L.; Williams, A. R.; Swain, C. J. Biol. Med. Chem. Lett. 2001, 11, 1237. |
[28] | (c) Hartung, C. G.; Fecher, A.; Chapell, B.; Snieckus, V. Org. Lett. 2003, 5, 1899. |
[28] | (d) Cacchi, S.; Fabrizi, G. Chem. Rev. 2005, 105, 2873. |
[29] | Jiang, X.; Chen, J.; Zhu, W.; Cheng, K.; Liu, Y.; Su, W.; Yu, C. J. Org. Chem. 2017, 82, 10665. |
[30] | (a) Barreiro, E. J.; Kümmerle, A. E.; Fraga, C. A. M. Chem. Rev. 2011, 111, 5215. |
[30] | (b) Sun, S; Fu, J. Bioorg. Med. Chem. Lett. 2018, 28, 3283. |
[31] | Schonherr, H.; Cernak, T. Angew. Chem., Int. Ed. 2013, 52, 12256. |
[32] | Ni, S.; Hribersek, M.; Baddigam, S. K.; Ingner, F. J. L.; Orthaber, A.; Gates, P. J.; Pilarski, L. T. Angew. Chem., Int. Ed. 2021, 60, 6660. |
[33] | Yu, J.; Zhang, C.; Yang, X.; Su, W. Org. Biomol. Chem. 2019, 17, 4446. |
[34] | (a) Pan, C.; Jin, H.; Liu, X.; Cheng, Y.; Zhu, C. Chem. Commun. 2013, 49, 2933. |
[34] | (b) Yu, L.; Li, P.; Wang, L. Chem. Commun. 2013, 49, 2368. |
[34] | (c) Wang, C.; Wang, S.; Li, H.; Yan, J.; Chi, H.; Chen, X.; Zhang, Z. Org. Biomol. Chem. 2014, 12, 1721. |
[35] | Su, W.; Yu, J.; Li, Z.; Jiang, Z. J. Org. Chem. 2011, 76, 9144. |
[36] | Yu, J.; Li, Z.; Jia, K.; Jiang, Z.; Liu, M.; Su, W. Tetrahedron Lett. 2013, 54, 2006. |
[37] | Ryu, J.; Kwak, J.; Shin, K.; Lee, D.; Chang, S. J. Am. Chem. Soc. 2013, 135, 12861. |
[38] | (a) Hermann, G. N.; Becker, P.; Bolm, C. Angew. Chem., Int. Ed. 2016, 55, 3781. |
[38] | (b) Lee, D.; Kim, Y.; Chang, S. J. Org. Chem. 2013, 78, 11102. |
[39] | (a) Dubè, P.; Nathel, N. F. F.; Vetelino, M.; Couturier, M.; Aboussafy, C. L. E.; Pichette, S.; Jorgensen, M. L.; Hardink, M. Org. Lett. 2009, 11, 5622. |
[39] | (b) Bizet, V.; Buglioni, L.; Bolm, C. Angew. Chem., Int. Ed. 2014, 53, 5639. |
[39] | (c) Buglioni, L.; Bizet, V.; Bolm, C. Adv. Synth. Catal. 2014, 356, 2209. |
[40] | Hermann, G. N.; Bolm, C. ACS Catal. 2017, 7, 4592. |
[41] | Cheng, H.; Hernández, J. G.; Bolm, C. Adv. Synth. Catal. 2018, 360, 1800. |
[42] | Yetra, S. R.; Shen, Z.; Wang, H.; Ackermann, L. Beilstein J. Org. Chem. 2018, 14, 1546. |
[43] | Li, L; Wang, G.-W. Tetrahedron 2018, 74, 4188. |
[44] | Lu, X.; Bai, Y.; Qin, J.; Wang, N.; Wu, Y.; Zhong, F. ACS Sustainable Chem. Eng. 2021, 9, 1684. |
[45] | Hernandez, J. G.; Bolm, C. Chem. Commun. 2015, 51, 12582. |
[46] | Li, L.; Brennessel, W. W.; Jones, W. D. J. Am. Chem. Soc. 2008, 130, 12414. |
[47] | Liu, Z.; Xu, H.; Wang, G.-W. Beilstein J. Org. Chem. 2018, 14, 430. |
[48] | Pang, Y.; Ishiyama, T.; Kubota, K.; Ito, H. Chemistry 2019, 25, 4654. |
[49] | (a) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. Chem. Rev. 2010, 110, 890. |
[49] | (b) Xu, L.; Wang, G.; Zhang, S.; Wang, H.; Wang, L.; Liu, L.; Jiao, J.; Li, P. Tetrahedron 2017, 73, 7123. |
[50] | (a) Desai, L. V.; Malik, H. A.; Sanford, M. S. Org. Lett. 2006, 8, 1141. |
[50] | (b) Wang, G.-W.; Yuan, T. T. J. Org. Chem. 2010, 75, 476. |
[50] | (c) Zhang, S. Y.; He, G.; Zhao, Y.; Wright, K.; Nack, W. A.; Chen, G. J. Am. Chem. Soc. 2012, 134, 7313. |
[51] | Zhou, K.; Hao, H.-Y.; Mao, Y.-J.; Wu, Q.-Z.; Chen, L.; Wang, S.; Jin, W.; Xu, Z.-Y.; Lou, S.-J.; Xu, D.-Q. ACS Sustainable Chem. Eng. 2021, 9, 4433. |
[52] | Li, L; Wang, J. J.; Wang, G.-W. J. Org. Chem. 2016, 81, 5433. |
[53] | Hermann, G. N.; Jung, C. L.; Bolm, C. Green Chem. 2017, 19, 2520. |
[54] | Schobel, J. H.; Elbers, P.; Truong, K. N.; Rissanen, K.; Bolm, C. Adv. Synth. Catal. 2021, 363, 1. |
[55] | Achar, T. K.; Mal, P. J. Org. Chem. 2015, 80, 666. |
[56] | Achar, T. K.; Mal, P. Adv. Synth. Catal 2015, 357, 3977. |
[57] | Hari, D. P.; Schroll, P.; Konig, B. J. Am. Chem. Soc. 2012, 134, 2958. |
[58] | Kubota, K.; Pang, Y.; Miura, A.; Ito, H. Science 2019, 366, 1500. |
[59] | Pang, Y.; Lee, J. W.; Kubota, K.; Ito, H. Angew. Chem., Int. Ed. 2020, 59, 22570. |
[60] | Qin, J.; Zuo, H.; Ni, Y.; Yu, Q.; Zhong, F. ACS Sustainable Chem. Eng. 2020, 8, 12342. |
[61] | (a) Vásquez-Céspedes, S.; Ferry, A.; Candish, L.; Glorius, F. Angew. Chem., Int. Ed. 2015, 54, 5772. |
[61] | (b) Yi, S.; Li, M.; Mo, W.; Hu, X.; Hu, B.; Sun, N.; Jin, L.; Shen, Z. Tetrahedron Lett. 2016, 57, 1912. |
[62] | Edson, de Oliveira Lima Filho; Malvestiti, I. ACS Omega 2020, 5, 33329. |
[63] | (a) Exner, B.; Bayarmagnai, B.; Matheis, C.; Goossen, L. J. J. Fluorine Chem. 2017, 198, 89. |
[63] | (b) Jiang, H.; Yu, W.; Tang, X.; Li, J.; Wu, W. J. Org. Chem. 2017, 82, 9312. |
[63] | (c) Wu, D.; Qiu, J.; Karmaker, P. G.; Yin, H.; Chen, F. X. J. Org. Chem. 2018, 83, 1576. |
[64] | Friščić, T.; Fábián, L. CrystEngComm 2009, 11, 743. |
/
〈 |
|
〉 |