REVIEWS

Recent Advances in C(sp3)—H Phosphorylation Based on Secondary Phosphine Oxides and Phosphite Esters

  • Yuanting Huang ,
  • Qian Chen
Expand
  • School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006
* Corresponding author. E-mail:

Received date: 2021-07-21

  Revised date: 2021-08-13

  Online published: 2021-08-25

Supported by

National Natural Science Foundation of China(U2001222); Science and Technology Planning Project of Guangdong Province(2021A0505030069)

Abstract

Organophosphorus compounds bearing C(sp3)—P bonds have been widely used in organic synthesis, bioorganic and medical chemistry, agrochemicals, flame retardants and extractants. In recent years, the direct phosphorylation of C—H bonds has received much attention because this strategy represents more straightforward, efficient and atom-economic construction of C—P bonds. The recent advances in C(sp3)—H phosphorylation using secondary phosphine oxides and phosphite esters as phosphorus sources since 2009 are reviewed, and the corresponding reactions are categorized in five types according to the structure of C(sp3)—H bonds.

Cite this article

Yuanting Huang , Qian Chen . Recent Advances in C(sp3)—H Phosphorylation Based on Secondary Phosphine Oxides and Phosphite Esters[J]. Chinese Journal of Organic Chemistry, 2021 , 41(11) : 4138 -4153 . DOI: 10.6023/cjoc202107044

References

[1]
(a) Maryanoff, B. E.; Reitz, A. B. Chem. Rev. 1989, 89, 863.
[1]
(b) Methot, J. L.; Roush, W. R. Adv. Synth. Catal. 2004, 346, 1035.
[1]
(c) Martin, R.; Buchwald, S. L. Acc. Chem. Res. 2008, 41, 1461.
[1]
(d) Surry, D. S.; Buchwald, S. L. Chem. Sci. 2011, 2, 27.
[1]
(e) Bisceglia, J. A.; Orelli, L. R. Curr. Org. Chem. 2015, 19, 744.
[1]
(f) Sun, G.; Xiao, F.; Duan, W. Chin. J. Org. Chem. 2020, 40, 61. (in Chinese)
[1]
(孙贵救, 肖繁花, 段伟良, 有机化学, 2020, 40, 61.)
[1]
(g) Zhu, R.-Y.; Liao, K.; Yu, J.-S.; Zhou, J. Acta Chim. Sinica 2020, 78, 193. (in Chinese)
[1]
(朱仁义, 廖奎, 余金生, 周剑, 化学学报, 2020, 78, 193.)
[1]
(h) Xu, R.; Yang, H.; Tang, W. Chin. J. Org. Chem. 2020, 40, 1409. (in Chinese)
[1]
(许容华, 杨贺, 汤文军, 有机化学, 2020, 40, 1409.)
[1]
(i) Zhao, S.; Gong, X.; Gan, Z.; Yan, Q.; Liu, X.; Yang, D. Chin. J. Org. Chem. 2021, 41, 258. (in Chinese)
[1]
(赵苏艳, 宫雪芹, 甘子玉, 颜秋莉, 刘学良, 杨道山, 有机化学, 2021, 41, 258.)
[1]
(j) Liu, J.; Xu, J.; Pajkert, R.; Mei, H.; Röschenthaler, G.-V.; Han, J. Acta Chim. Sinica 2021, 79, 747. (in Chinese)
[1]
(刘江, 徐敬成, Romana, Pajkert, 梅海波, Gerd-Volker, Röschenthaler, 韩建林, 化学学报, 2021, 79, 747.)
[1]
(k) Sheng, L.; Gao, H.; Wu, X.; Fan, G.; Liu, P. Chin. J. Org. Chem. 2021, 41, 2105. (in Chinese)
[1]
(盛力, 高浩凌, 吴旭锋, 范钢, 刘鹏程, 有机化学, 2021, 41, 2105.)
[2]
(a) Romanenko, V. D.; Kukhar, V. P. Chem. Rev. 2006, 106, 3868.
[2]
(b) Mucha, Kafarski, A. P.; Berlicki, Ł. J. Med. Chem. 2011, 54, 5955.
[2]
(c) Turcheniuk, K. V.; Kukhar, V. P.; Röschenthaler, G.-V.; Aceña, J. L.; Soloshonok, V. A.; Sorochinsky, A. E. RSC Adv. 2013, 3, 6693.
[2]
(d) Arya, T.; Reddi, R.; Kishor, C.; Ganji, R. J.; Bhukya, S.; Gumpena, R.; McGowan, S.; Drag, M.; Addlagatta, A. J. Med. Chem. 2015, 58, 2350.
[2]
(e) Horsman, G. P.; Zechel, D. L. Chem. Rev. 2017, 117, 5704.
[3]
Takano, H. K.; Dayan, F. E. Pest Manage. Sci. 2020, 76, 3911.
[4]
Levchik, S. V.; Weil, E. D. Adv. Fire Retard. Mater. 2008, 41.
[5]
(a) Gupta, B.; Deep, A.; Singh, V.; Tandon, S. N. Hydrometallurgy 2003, 70, 121.
[5]
(b) Feng, W.; Zhang, S.; Zhong, Q.; Wang, G.; Pan, X.; Xu, X.; Zhou, W.; Li, T.; Luo, L.; Zhang, Y. J. Hazard Mater. 2020, 381, 120997.
[6]
(a) Arbuzov, B. A. Pure Appl. Chem. 1964, 9, 307.
[6]
(b) Bhattacharya, A. K.; Thyagarajan, G. Chem. Rev. 1981, 81, 415.
[6]
(c) Megati, S.; Phadtare, S.; Zemlicka, J. J. Org. Chem. 1992, 57, 2320.
[6]
(d) Renard, P.-Y.; Vayron, P.; Leclerc, E.; Valleix, A.; Mioskowski, C. Angew. Chem., Int. Ed. 2003, 42, 2389.
[6]
(e) Abell, J. P.; Yamamoto, H. J. Am. Chem. Soc. 2008, 130, 10521.
[6]
(f) Guin, J.; Wang, Q.; van Gemmeren, M.; List, B. Angew. Chem., Int. Ed. 2015, 54, 355.
[7]
(a) Li, C.-J. Acc. Chem. Res. 2009, 42, 335.
[7]
(b) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215.
[7]
(c) Liu, C.; Zhang, H.; Shi, W.; Lei, A. Chem. Rev. 2011, 111, 1780.
[7]
(d) Zhang, C.; Tang, C.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3464.
[7]
(e) Girard, S. A.; Knauber, T.; Li, C.-J. Angew. Chem., Int. Ed. 2014, 53, 74.
[8]
(a) Hou, C.; Ren, Y.; Lang, R.; Hu, X.; Xia, C.; Li, F. Chem. Commun. 2012, 48, 5181.
[8]
(b) Feng, C.-G.; Ye, M.; Xiao, K.-J.; Li, S.; Yu, J.-Q. J. Am. Chem. Soc. 2013, 135, 9322.
[8]
(c) Zhu, L.; Yu, H.; Guo, Q.; Chen, Q.; Xu, Z.; Wang, R. Org. Lett. 2015, 17, 1978.
[8]
(d) Yang, J.; Chen, T.; Zhou, Y.; Yin, S.-F.; Han, L.-B. Organometallics 2015, 34, 5095.
[8]
(e) Xu, P.; Wu, Z.; Zhou, N.; Zhu, C. Org. Lett. 2016, 18, 1143.
[8]
(f) Zhang, J.-Q.; Chen, T.; Zhang, J.-S.; Han, L.-B. Org. Lett. 2017, 19, 4692.
[8]
(g) Chen, L.; Liu, X.-Y.; Zou, Y.-X. Adv. Synth. Catal. 2020, 362, 1724.
[9]
Baslé, O.; Li, C.-J. Chem. Commun. 2009, 4124.
[10]
Han, W.; Ofial, A. R. Chem. Commun. 2009, 6023.
[11]
Han, W.; Mayer, P.; Ofial, A. R. Adv. Synth. Catal. 2010, 352, 1667.
[12]
Alagiri, K.; Devadig, P.; Prabhu, K. R. Tetrahedron Lett. 2012, 53, 1456.
[13]
Xie, J.; Li, H.; Xue, Q.; Cheng, Y.; Zhu, C. Adv. Synth. Catal. 2012, 354, 1646.
[14]
Tanoue, A.; Yoo, W.-J.; Kobayashi, S. Adv. Synth. Catal. 2013, 355, 269.
[15]
Ho, H. E.; Ishikawa, Y.; Asao, N.; Yamamoto, Y.; Jin, T. Chem. Commun. 2015, 51, 12764.
[16]
Mao, L.-L.; Li, C.-C.; Yang, Q.; Cheng, M.-X.; Yang, S.-D. Chem. Commun. 2017, 53, 4473.
[17]
Liu, Y.; Wang, C.; Xue, D.; Xiao, M.; Li, C.; Xiao, J. Chem.-Eur. J. 2017, 23, 3051.
[18]
Cai, J.; Liu, Y.; Jiang, Y.; Yang, Y. Phosphorus, Sulfur Silicon Relat. Elem. 2017, 192, 1068.
[19]
Patil, M. R.; Dedhia, N. P.; Kapdi, A. R.; Kumar, A. V. J. Org. Chem. 2018, 83, 4477.
[20]
Lin, B.; Shi, S.; Lin, R.; Cui, Y.; Fang, M.; Tang, G.; Zhao, Y. J. Org. Chem. 2018, 83, 6754.
[21]
Wang, J.; Li, J.; Wei, Y.; Yang, J.; Huo, C. Org. Chem. Front. 2018, 5, 3534.
[22]
Xia, Z.; Qin, L.; Zhou, W.; Wang, H.; Yu, B.; Sun, Z.; Qian, J.; He, M. Tetrahedron Lett. 2019, 60, article 151121.
[23]
Wang, H.; Li, X.; Wu, F.; Wan, B. Tetrahedron Lett. 2012, 53, 681.
[24]
Alagiri, K.; Devadig, P.; Prabhu, K. R. Chem.-Eur. J. 2012, 18, 5160.
[25]
Dhineshkumar, J.; Lamani, M.; Alagiri, K.; Prabhu, K. R. Org. Lett. 2013, 15, 1092.
[26]
Huo, C.; Wang, C.; Wu, M.; Jia, X.; Wang, X.; Yuan, Y.; Xie, H. Org. Biomol. Chem. 2014, 12, 3123.
[27]
Huo, C.; Xie, H.; Wu, M.; Jia, X.; Wang, X.; Chen, F.; Tang, J. Chem.-Eur. J. 2015, 21, 5723.
[28]
Gu, K.; Zhang, Z.; Bao, Z.; Xing, H.; Yang, Q.; Ren, Q. Eur. J. Org. Chem. 2016, 3939.
[29]
Dhineshkumar, J.; Samaddar, P.; Prabhu, K. R. ACS Omega 2017, 2, 4885.
[30]
Lin, B.; Lu, G.; Lin, R.; Cui, Y.; Liu, Y.; Tang, G.; Zhao, Y. Synlett 2018, 29, 2697.
[31]
Hari, D. P.; König, B. Org. Lett. 2011, 13, 3852.
[32]
Rueping, M.; Zhu, S.; Koenigs, R. M. Chem. Commun. 2011, 47, 8679.
[33]
Rueping, M.; Vila, C.; Bootwicha, T. ACS Catal. 2013, 3, 1676.
[34]
Xue, Q.; Xie, J.; Jin, H.; Cheng, Y.; Zhu, C. Org. Biomol. Chem. 2013, 11, 1606.
[35]
To, W.-P.; Liu, Y.; Lau, T.-C.; Che, C.-M. Chem.-Eur. J. 2013, 19, 5654.
[36]
Yoo, W.-J.; Kobayashi, S. Green Chem. 2014, 16, 2438.
[37]
Wang, X.-Z.; Meng, Q.-Y.; Zhong, J.-J.; Gao, X.-W.; Lei, T.; Zhao, L.-M.; Li, Z.-J.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Chem. Commun. 2015, 51, 11256.
[38]
Franz, J. F.; Kraus, W. B.; Zeitler, K. Chem. Commun. 2015, 51, 8280.
[39]
Zhi, Y.; Li, Z.; Feng, X.; Xia, H.; Zhang, Y.; Shi, Z.; Mu, Y.; Liu, X. J. Mater. Chem. A 2017, 5, 22933.
[40]
Niu, L.; Wang, S.; Liu, J.; Yi, H.; Liang, X.-A.; Liu, T.; Lei, A. Chem. Commun. 2018, 54, 1659.
[41]
Liang, H.-P.; Chen, Q.; Han, B.-H. ACS Catal. 2018, 8, 5313.
[42]
Wu, W.-B.; Wong, Y.-C.; Tan, Z.-K.; Wu, J. Catal. Sci. Technol. 2018, 8, 4257.
[43]
Chen, K.; Cheng, Y.; Chang, Y.; Li, E.; Xu, Q.-L.; Zhang, C.; Wen, X.; Sun, H. Tetrahedron 2018, 74, 483.
[44]
Quint, V.; Chouchène, N.; Askri, M.; Lalevée, J.; Gaumont, A.-C.; Lakhdar, S. Org. Chem. Front. 2019, 6, 41.
[45]
Kumar, G.; Solanki, P.; Nazish, M.; Neogi, S.; Kureshy, R. I.; Khan, N.-U. H. J. Catal. 2019, 371, 298.
[46]
Casado-Sa?nchez, A.; Uygur, M.; Gonzalez-Mun?oz, D.; Aguilar- Galindo, F.; Nova-Ferna?ndez, J. L.; Arranz-Plaza, J.; Díaz-Tendero, S.; Cabrera, S.; Manchen?o, O. G.; Alema?n, J. J. Org. Chem. 2019, 84, 6437.
[47]
Li, P.; Wang, G.-W.; Zhu, X.; Wang, L. Tetrahedron 2019, 75, 3448.
[48]
Xie, W.; Liu, N.; Gong, B.; Ning, S.; Che, X.; Cui, L.; Xiang, J. Eur. J. Org. Chem. 2019, 2498.
[49]
Ollivier, A.; Sengmany, S.; Rey, M.; Martens, T.; Léonel, E. Synlett 2020, 31, 1191.
[50]
Das, D.; Seidel, D. Org. Lett. 2013, 15, 4358.
[51]
Hu, G.; Chen, W.; Ma, D.; Zhang, Y.; Xu, P.; Gao, Y.; Zhao, Y. J. Org. Chem. 2016, 81, 1704.
[52]
Zhi, H.; Ung, S. P.-M.; Liu, Y.; Zhao, L.; Li, C.-J. Adv. Synth. Catal. 2016, 358, 2553.
[53]
Cheng, M.-X.; Ma, R.-S.; Yang, Q.; Yang, S.-D. Org. Lett. 2016, 18, 3262.
[54]
Jia, X.; Liu, X.; Shao, Y.; Yuan, Y.; Zhu, Y.; Hou, W.; Zhang, X. Adv. Synth. Catal. 2017, 359, 4399.
[55]
Jia, X.; Liu, X.; Yuan, Y.; Li, P.; Hou, W.; He, K. Chem.-Asian J. 2018, 13, 1911.
[56]
Liu, Q.; Yu, S.; Hu, L.; Hussain, M. I.; Zhang, X.; Xiong, Y. Tetrahedron 2018, 74, 7209.
[57]
Cheng, M.-X.; Lei, J.-W.; Xie, C.-X. Synlett 2019, 30, 114.
[58]
Zhu, Z.-Q.; Xiao, L.-J.; Guo, D.; Chen, X.; Ji, J.-J.; Zhu, X.; Xie, Z.-B.; Le, Z.-G. J. Org. Chem. 2019, 84, 435.
[59]
Huang, M.; Dai, J.; Cheng, X.; Ding, M. Org. Lett. 2019, 21, 7759.
[60]
Zhao, Z.; Xue, W.; Gao, Y.; Tang, G.; Zhao, Y. Chem.-Asian J. 2013, 8, 713.
[61]
Huang, Q.; Dong, K.; Bai, W.; Yi, D.; Ji, J.-X.; Wei, W. Org. Lett. 2019, 21, 3332.
[62]
Ke, J.; Tang, Y.; Yi, H.; Li, Y.; Cheng, Y.; Liu, C.; Lei, A. Angew. Chem., Int. Ed. 2015, 54, 6604.
[63]
Leifert, D.; Studer, A. Angew. Chem., Int. Ed. 2020, 59, 74.
[64]
Fu, Q.; Yi, D.; Zhang, Z.; Liang, W.; Chen, S.; Yang, L.; Zhang, Q.; Ji, J.; Wei, W. Org. Chem. Front. 2017, 4, 1385.
[65]
Zhang, Z.-J.; Yi, D.; Fu, Q.; Liang, W.; Chen, S.-Y.; Yang, L.; Du, F.-T.; Ji, J.-X.; Wei, W. Tetrahedron Lett. 2017, 58, 2417.
[66]
Li, C.-K.; Tao, Z.-K.; Zhou, Z.-H.; Bao, X.-G.; Zhou, S.-F.; Zou, J.-P. J. Org. Chem. 2019, 84, 2351.
[67]
Li, L.; Huang, W.; Chen, L.; Dong, J.; Ma, X.; Peng, Y. Angew. Chem., Int. Ed. 2017, 56, 10539.
[68]
Zhao, X.; Huang, M.; Li, Y.; Zhang, J.; Kim, J. K.; Wu, Y. Org. Chem. Front. 2019, 6, 1433.
[69]
Ou, Y.; Huang, Y.; Liu, Y.; Huo, Y.; Gao, Y.; Li, X.; Chen, Q. Adv. Synth. Catal. 2020, 362, 5783.
[70]
Chen, Q.; Wen, C.; Wang, X.; Yu, G.; Ou, Y.; Huo, Y.; Zhang, K. Adv. Synth. Catal. 2018, 360, 3590.
[71]
Wen, C.; Yu, G.; Ou, Y.; Wang, X.; Zhang, K.; Chen, Q. Tetrahedron Lett. 2019, 60, 1345.
[72]
Chen, Q.; Wang, X.; Yu, G.; Wen, C.; Huo, Y. Org. Chem. Front. 2018, 5, 2652.
[73]
Yuan, Y.; Qiao, J.; Cao, Y.; Tang, J.; Wang, M.; Ke, G.; Lu, Y.; Liu, X.; Lei, A. Chem. Commun. 2019, 55, 4230.
[74]
Li, K.-J.; Jiang, Y.-Y.; Xu, K.; Zeng, C.-C.; Sun, B.-G. Green Chem. 2019, 21, 4412.
[75]
Chen, L.; Zhou, Z.; Zhang, S.; Li, X.; Ma, X.; Dong, J. Chem. Commun. 2019, 55, 13693.
[76]
(a) Zhang, W.; Wang, F.; McCann, S. D.; Wang, D.; Chen, P.; Stahl, S. S.; Liu, G. Science 2016, 353, 1014.
[76]
(b) Wang, F.; Chen, P.; Liu, G. Acc. Chem. Res. 2018, 51, 2036.
[76]
(c) Li, J.; Zhang, Z.; Wu, L.; Zhang, W.; Chen, P.; Lin, Z.; Liu, G. Nature 2019, 574, 516.
[76]
(d) Cheng, X.; Lu, H.; Lu, Z. Nat. Commun. 2019, 10, 3549.
[76]
(e) Zhang, W.; Wu, L.; Chen, P.; Liu, G. Angew. Chem., Int. Ed. 2019, 58, 6425.
[76]
(f) Ye, L.; Tian, Y.; Meng, X.; Gu, Q.-X.; Liu, X.-Y. Angew. Chem., Int. Ed. 2020, 59, 1129.
[76]
(g) Fu, L.; Zhang, Z.; Chen, P.; Lin, Z.; Liu, G. J. Am. Chem. Soc. 2020, 142, 12493.
Outlines

/