REVIEWS

Recent Advances in Electrochemical C(3)—H Functionalization of Quinoxalin-2(1H)-ones

  • Dandan Li ,
  • Xiaochen Wang ,
  • Shanshan Li ,
  • Chenyu Fu ,
  • Qianqian Li ,
  • Dongtao Xu ,
  • Yingying Ma
Expand
  • Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang, Henan 461000
* Corresponding author. E-mail:

Received date: 2021-07-18

  Revised date: 2021-09-04

  Online published: 2021-09-15

Supported by

National Natural Science Foundation of China(21901219); Key Project of Education Department of Henan Province(20B150024); Young Key Teacher Training Plan of Henan Provincial Higher Education in 2021(2021GGJS146); Open Subject Research Fund of the Key Laboratory of Drug Quality Control and Evaluation in Henan Province and the Young Backbone Teachers Project of Xuchang University

Abstract

Quinoxalinone and its derivatives are a class of important nitrogen heterocyclic compounds, which widely exist in natural products, drugs and functional materials. Therefore, the C—H functionalization of quinoxalinone has attracted extensive attention of chemical workers. In recent years, electrochemical synthesis directly uses electron as a “clean reagent” to participate in redox reaction without additional redox reagent, which has the characteristics of mild reaction conditions and good atom economy. This method meets the requirements of green chemistry and sustainable development. With the in-depth study on the mechanism of electrochemical synthesis and the standardization of reaction equipment, this method has become a powerful tool for functionalization of quinoxalineones. The recent advances in the electrochemical C(3)—H functionalization of quinoxaline-2(1H)-one are summarized. The reaction transformation conditions and mechanisms are systematically discussed, and the challenges and future directions of this field are included.

Cite this article

Dandan Li , Xiaochen Wang , Shanshan Li , Chenyu Fu , Qianqian Li , Dongtao Xu , Yingying Ma . Recent Advances in Electrochemical C(3)—H Functionalization of Quinoxalin-2(1H)-ones[J]. Chinese Journal of Organic Chemistry, 2021 , 41(12) : 4610 -4622 . DOI: 10.6023/cjoc202107042

References

[1]
(a) Waring, M. J.; Ben-Hadda, T.; Kotchevar, A. T.; Ramdani, A.; Touzani, R.; Elkadiri, S.; Hakkou, A.; Bouakka, M.; Ellis, T. Molecules 2002, 7, 641.
[1]
(b) Horton, D. A.; Bourne, G. T.; Smythe, M. L. Chem. Rev. 2003, 103, 893.
[1]
(c) Refaat, H. M.; Moneer, A. A.; Khalil, O. M. Arch. Pharm. Res. 2004, 27, 1093.
[1]
(d) Carta, A.; Piras, S.; Loriga, G.; Paglietti, G. Mini-Rev. Med. Chem. 2006, 6, 1179.
[1]
(e) El-Hawash, S. A. M.; Habib, N. S.; Kassem, M. A. Arch. Pharm. 2006, 339, 564.
[1]
(f) Meyer, E.; Joussef, A. C.; de Souza, L. D. B. P. Synth. Commun. 2006, 36, 729.
[1]
(g) Moarbess, G.; Deleuze-Masquefa, C.; Bonnard, V.; Gayraud- Paniagua, S.; Vidal, J.-R.; Bressolle, F.; Pinguet, F.; Bonnet, P.-A. Bioorg. Med. Chem. 2008, 16, 6601.
[1]
(h) Ramli, Y.; Benzeid, H.; Bouhfid, R.; Rodi, Y. K.; Ferfra, S.; Essassi, E. M. Stud. Cercet. Stiint.: Chim. Ing. Chim., Biotehnol., nd. Aliment. 2010, 11, 67.
[1]
(i) Liu, R.; Huang, Z.; Murray, M. G.; Guo, X.; Liu, G. J. Med. Chem. 2011, 54, 5747.
[1]
(j) Galal, S. A.; Khairat, S. H. M.; Ragab, F. A. F.; Abdelsamie, A. S.; Ali, M. M.; Soliman, S. M.; Mortier, J.; Wolber, G.; El Diwani, H. I. Eur. J. Med. Chem. 2014, 86, 122.
[1]
(k) Hussain, S.; Parveen, S.; Hao, X.; Zhang, S.; Wang, W.; Qin, X.; Yang, Y.; Chen, X.; Zhu, S.; Zhu, C.; Ma, B. Eur. J. Med. Chem. 2014, 80, 383.
[1]
(l) Khattab, S. N.; Abdel Moneim, S. A. H.; Bekhit, A. A.; El Massry, A. M.; Hassan, S. Y.; El-Faham, A.; Ali Ahmed, H. E.; Amer, A. Eur. J. Med. Chem. 2015, 93, 308.
[1]
(m) Qin, X.; Hao, X.; Han, H.; Zhu, S.; Yang, Y.; Wu, B.; Hussain, S.; Parveen, S.; Jing, C.; Ma, B.; Zhu, C. J. Med. Chem. 2015, 58, 1254.
[1]
(n) Cil, O.; Phuan, P.-W.; Lee, S.; Tan, J.; Haggie, P. M.; Levin, M. H.; Sun, L.; Thiagarajah, J. R.; Ma, T.; Verkman, A. S. Cell Mol. Gastroenterol. Hepatol. 2016, 2, 317.
[1]
(o) Shi, L.; Li, X.; Hu, W.; Wu, J.; Zhou, H.; Zhou, H. Mini-Rev. Med. Chem. 2018, 18, 392.
[2]
Weïwer, M.; Spoonamore, J.; Wei, J.; Guichard, B.; Ross, N. T.; Masson, K.; Silkworth, W.; Dandapani, S.; Palmer, M.; Scherer, C. A.; Stern, A. M.; Schreiber, S. L.; Munoz, B. ACS Med. Chem. Lett. 2012, 3, 1034.
[3]
(a) Smits, R. A.; Lim, H. D.; Hanzer, A.; Zuiderveld, O. P.; Guaita, E.; Adami, M.; Coruzzi, G.; Leurs, R.; de Esch, I. J. P. J. Med. Chem. 2008, 51, 2457.
[3]
(b) Abu-Hashem, A. A.; Gouda, M. A.; Badria, F. A. Eur. J. Med. Chem. 2010, 45, 1976.
[3]
(c) Mangold, S. L.; Prost, L. R.; Kiessling, L. L. Chem. Sci. 2012, 3, 772.
[4]
Quinn, J.; Guo, C.; Ko, L.; Sun, B.; He, Y.; Li, Y. RSC Adv. 2016, 6, 22043.
[5]
(a) Xie, L.-Y.; Bai, Y.-S.; Xu, X.-Q.; Peng, X.; Tang, H.-S.; Huang, Y.; Lin, Y.-W.; Cao, Z.; He, W.-M. Green Chem. 2020, 22, 1720.
[5]
(b) Wang, L.; Bao, P.; Liu, W.; Liu, S.; Hu, C.; Yue, H.; Yang, D.; Wei, W. Chin. J. Org. Chem. 2018, 38, 3189. (in Chinese)
[5]
( 王雷雷, 鲍鹏丽, 刘维伟, 刘思彤, 胡昌松, 岳会兰, 杨道山, 魏伟, 有机化学, 2018, 38, 3189.)
[5]
(c) Wu, Y.; Chen, J.-Y.; Ning, J.; Jiang, X.; Deng, J.; Deng, Y.; Xu, R.; He, W.-M. Green Chem. 2021, 23, 3950.
[5]
(d) Shi, J.; Wei, W. Chin. J. Org. Chem. 2020, 40, 2170. (in Chinese)
[5]
( 时建伟, 魏伟, 有机化学, 2020, 40, 2170.)
[5]
(e) Mao, P.; Zhu, J.; Yuan, J.; Yang, L.; Xiao, Y.; Zhang, C. Chin. J. Org. Chem. 2019, 39, 1529. (in Chinese)
[5]
( 毛璞, 朱军亮, 袁金伟, 杨亮茹, 肖咏梅, 张长森, 有机化学, 2019, 39, 1529.)
[5]
(f) Xie, L.-Y.; Peng, S.; Yang, L.-H.; Peng, C.; Lin, Y.-W.; Yu, X.; Cao, Z.; Peng, Y.-Y.; He, W.-M. Green Chem. 2021, 23, 374.
[5]
(g) Yi, R.; He, W. Chin. J. Org. Chem. 2021, 41, 1267. (in Chinese)
[5]
( 易荣楠, 何卫民, 有机化学, 2021, 41, 1267.)
[5]
(h) Xie, L.-Y.; Liu, Y.-S.; Ding, H.-R.; Gong, S.-F.; Tan, J.-X.; He, J.-Y.; Cao, Z.; He, W.-M. Chin. J. Catal. 2020, 41, 1168.
[5]
(i) Chen, J.-Y.; Wu, H.-Y.; Gui, Q.-W.; Yan, S.-S.; Deng, J.; Lin, Y.-W.; Cao, Z.; He, W.-M. Chin. J. Catal. 2021, 42, 1445.
[5]
(j) Ke, Q.; Yan, G.; Yu, J.; Wu, X. Org. Biomol. Chem. 2019, 17, 5863.
[5]
(k) Rostoll-Berenguer, J.; Blay, G.; Pedro, J. R.; Vila, C. Eur. J. Org. Chem. 2020, 2020, 6148.
[5]
(l) Monika, M.; Selvakumar, S. Synthesis 2019, 51, 4113.
[5]
(m) Ghosh, P.; Das, S. Synth. Commun. 2020, 50, 2266.
[6]
(a) Frontana-Uribe, B. A.; Little, R. D.; Ibanez, J. G.; Palma, A.; Vasquez-Medrano, R. Green Chem. 2010, 12, 2099.
[6]
(b) Jiang, Y.; Xu, K.; Zeng, C. Chem. Rev. 2018, 118, 4485.
[6]
(c) Jiao, K.-J.; Xing, Y.-K.; Yang, Q.-L.; Qiu, H.; Mei, T.-S. Acc. Chem. Res. 2020, 53, 300.
[6]
(d) Karkas, M. D. Chem. Soc. Rev. 2018, 47, 5786.
[6]
(e) Ma, C.; Fang, P.; Mei, T.-S. ACS Catal. 2018, 8, 7179.
[6]
(f) Maeda, H.; Ohmori, H. Acc. Chem. Res. 1999, 32, 72.
[6]
(g) Minteer, S. D.; Baran, P. Acc. Chem. Res. 2020, 53, 545.
[6]
(h) Möhle, S.; Zirbes, M.; Rodrigo, E.; Gieshoff, T.; Wiebe, A.; Waldvogel, S. R. Angew. Chem., nt. Ed. 2018, 57, 6018.
[6]
(i) Novaes, L. F. T.; Liu, J.; Shen, Y.; Lu, L.; Meinhardt, J. M.; Lin, S. Chem. Soc. Rev. 2021, 50, 7941.
[6]
(j) Röckl, J. L.; Pollok, D.; Franke, R.; Waldvogel, S. R. Acc. Chem. Res. 2020, 53, 45.
[6]
(k) Sauermann, N.; Meyer, T. H.; Qiu, Y.; Ackermann, L. ACS Catal. 2018, 8, 7086.
[6]
(l) Waldvogel, S. R.; Lips, S.; Selt, M.; Riehl, B.; Kampf, C. J. Chem. Rev. 2018, 118, 6706.
[6]
(m) Wang, H.; Gao, X.; Lv, Z.; Abdelilah, T.; Lei, A. Chem. Rev. 2019, 119, 6769.
[6]
(n) Yamamoto, K.; Kuriyama, M.; Onomura, O. Acc. Chem. Res. 2020, 53, 105.
[6]
(o) Yan, M.; Kawamata, Y.; Baran, P. S. Chem. Rev. 2017, 117, 13230.
[6]
(p) Yi, H.; Zhang, G.; Wang, H.; Huang, Z.; Wang, J.; Singh, A. K.; Lei, A. Chem. Rev. 2017, 117, 9016.
[6]
(q) Yuan, Y.; Lei, A. Acc. Chem. Res. 2019, 52, 3309.
[7]
Tan, Y.; Wang, J.; Zhang, H.-Y.; Zhang, Y.; Zhao, J. Front. Chem. 2020, 8, 582.
[8]
Lian, F.; Xu, K.; Meng, W.; Zhang, H.; Tan, Z.; Zeng, C. Chem. Commun. 2019, 55, 14685.
[9]
Niu, K.; Song, L.; Hao, Y.; Liu, Y.; Wang, Q. Chem. Commun. 2020, 56, 11673.
[10]
Traister, K. M.; Molander, G. A. Synthesis and Application of Organoboron Compounds, In Topics in Organometallic Chemistry, Vol. 49, Eds.: Fernández, E.; Whiting, A., Springer, Switzerland, 2015, pp. 117-151.
[11]
Niu, K.; Hao, Y.; Song, L.; Liu, Y.; Wang, Q. Green Chem. 2021, 23, 302.
[12]
Gao, Y.; Wu, Z.; Yu, L.; Wang, Y.; Pan, Y. Angew. Chem., nt. Ed. 2020, 59, 10859.
[13]
Mo, F.; Qiu, D.; Zhang, L.; Wang, J. Chem. Rev. 2021, 121, 5741.
[14]
Jiang, Y.-Y.; Dou, G.-Y.; Zhang, L.-S.; Xu, K.; Little, R. D.; Zeng, C.-C. Adv. Synth. Catal. 2019, 361, 5170.
[15]
Hu, C.; Hong, G.; Zhou, C.; Tang, Z.-C.; Han, J.-W.; Wang, L.-M. Asian J. Org. Chem. 2019, 8, 2092.
[16]
(a) Lehnherr, D.; Lam, Y.-H.; Nicastri, M. C.; Liu, J.; Newman, J. A.; Regalado, E. L.; DiRocco, D. A.; Rovis, T. J. Am. Chem. Soc. 2020, 142, 468.
[16]
(b) Nicastri, M. C.; Lehnherr, D.; Lam, Y.-H.; DiRocco, D. A.; Rovis, T. J. Am. Chem. Soc. 2020, 142, 987.
[16]
(c) Zhang, S.; Li, L.; Li, X.; Zhang, J.; Xu, K.; Li, G.; Findlater, M. Org. Lett. 2020, 22, 3570.
[16]
(d) Zhang, X.; Yang, C.; Gao, H.; Wang, L.; Guo, L.; Xia, W. Org. Lett. 2021, 23, 3472.
[17]
Wen, J.; Yang, X.; Yan, K.; Qin, H.; Ma, J.; Sun, X.; Yang, J.; Wang, H. Org. Lett. 2021, 23, 1081.
[18]
(a) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
[18]
(b) Nie, J.; Guo, H.-C.; Cahard, D.; Ma, J.-A. Chem. Rev. 2011, 111, 455.
[18]
(c) Tomashenko, O. A.; Grushin, V. V. Chem. Rev. 2011, 111, 4475.
[18]
(d) Liu, T.; Shen, Q. Eur. J. Org. Chem. 2012, 2012, 6679.
[19]
Dou, G.-Y.; Jiang, Y.-Y.; Xu, K.; Zeng, C.-C. Org. Chem. Front. 2019, 6, 2392.
[20]
(a) Scheuer, P. J. Acc. Chem. Res. 1992, 25, 433.
[20]
(b) Fleming, F. Nat. Prod. Rep. 1999, 16, 597.
[20]
(c) Fleming, F. F.; Yao, L.; Ravikumar, P. C.; Funk, L.; Shook, B. C. J. Med. Chem. 2010, 53, 7902.
[21]
(a) Larock, R. C. Comprehensive Organic Transformations, Wiley-VCH, New York, 1989, p. 819.
[21]
(b) Caboni, P.; Sammelson, R. E.; Casida, J. E. J. Agric. Food Chem. 2003, 51, 7055.
[21]
(c) Kuhn, P.; Thomas, A.; Antonietti, M. Macromolecules 2009, 42, 319.
[22]
(a) Liskey, C. W.; Liao, X.; Hartwig, J. F. J. Am. Chem. Soc. 2010, 132, 11389.
[22]
(b) Wade, J. R. Organic Chemistry, 8 th ed., Pearson Education Inc, Glenview, Illinois, USA, 2013.
[22]
(c) Zhang, S.; del Pozo, J.; Romiti, F.; Mu, Y.; Torker, S.; Hoveyda, A. H. Science 2019, 364, 45.
[23]
Zhan, Y.; Li, Y.; Tong, J.; Liu, P.; Sun, P. Eur. J. Org. Chem. 2021, 2021, 2193.
[24]
(a) Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014, 57, 10257.
[24]
(b) Cernak, T.; Dykstra, K. D.; Tyagarajan, S.; Vachal, P.; Krska, S. W. Chem. Soc. Rev. 2016, 45, 546.
[25]
Li, K.-J.; Xu, K.; Liu, Y.-G.; Zeng, C.-C.; Sun, B.-G. Adv. Synth. Catal. 2019, 361, 1033.
[26]
Jiang, X.; Yang, L.; Ye, Z.; Du, X.; Fang, L.; Zhu, Y.; Chen, K.; Li, J.; Yu, C. Eur. J. Org. Chem. 2020, 2020, 1687.
[27]
Song, C.; Liu, K.; Dong, X.; Chiang, C.-W.; Lei, A. Synlett 2019, 30, 1149.
[28]
Zhou, J.; Li, Z.; Sun, Z.; Ren, Q.; Zhang, Q.; Li, H.; Li, J. J. Org. Chem. 2020, 85, 4365.
[29]
(a) Demmer, C. S.; Krogsgaard-Larsen, N.; Bunch, L. Chem. Rev. 2011, 111, 7981.
[29]
(b) Montchamp, J.-L. Acc. Chem. Res. 2014, 47, 77.
[29]
(c) Mady, M. F.; Kelland, M. A. Energy Fuels 2017, 31, 4603.
[29]
(d) Ntatsopoulos, V.; Macegoniuk, K.; Mucha, A.; Vassiliou, S.; Berlicki, Ł. Eur. J. Med. Chem. 2018, 159, 307.
[30]
Li, K.-J.; Jiang, Y.-Y.; Xu, K.; Zeng, C.-C.; Sun, B.-G. Green Chem. 2019, 21, 4412.
Outlines

/