REVIEWS

Recent Advances in the Syntheses of Helicene-Based Molecular Nanocarbons via the Scholl Reaction

  • Xing-Yu Chen ,
  • Ji-Kun Li ,
  • Xiao-Ye Wang
Expand
  • State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071
Dedicated to the 100th anniversary of Chemistry at Nankai University.
* Corresponding author. E-mail:

Received date: 2021-07-30

  Revised date: 2021-09-23

  Online published: 2021-09-30

Supported by

National Natural Science Foundation of China(21901128); National Natural Science Foundation of China(22071120); National Key R&D Program of China(2020YFA0711500); Fundamental Research Funds for the Central Universities

Abstract

Molecular nanocarbon materials with well-defined structures constructed through organic synthesis have attracted much attention in recent years, exhibiting unique properties and broad applications in many areas. The combination of helicenes and molcular nanocarbons generates a fancinating type of chiral molecular nanocarbons with potential applications in the fields of chiral optics, chiral optoelectronics and spintronics etc. However, it is of greart challenge to synthesize these molecules due to the large intramolecular strain and the special helical structure. Among various synthetic strategies, the Scholl reaction possesses the advantages of mild conditions and high efficiency. In this review, recent advances in the syntheses of helicene-based molecular nanocarbons via the Scholl reaction are summarized, and our perspectives to stimulate further development of the chiral nanocarbon materials are also provided.

Cite this article

Xing-Yu Chen , Ji-Kun Li , Xiao-Ye Wang . Recent Advances in the Syntheses of Helicene-Based Molecular Nanocarbons via the Scholl Reaction[J]. Chinese Journal of Organic Chemistry, 2021 , 41(11) : 4105 -4137 . DOI: 10.6023/cjoc202107063

References

[1]
Said, A. A.; Xie, J.; Zhang, Q. Small 2019, 15, 1900854.
[2]
Edwards, R. S.; Coleman, K. S. Nanoscale 2013, 5, 38.
[3]
Yan, Y.; Miao, J.; Yang, Z.; Xiao, F. X.; Yang, H. B.; Liu, B.; Yang, Y. Chem. Soc. Rev. 2015, 44, 3295.
[4]
Jariwala, D.; Sangwan, V. K.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Chem. Soc. Rev. 2013, 42, 2824.
[5]
Wu, Z.; Wang, Y.; Liu, X.; Lv, C.; Li, Y.; Wei, D.; Liu, Z. Adv. Mater. 2019, 31, 1800716.
[6]
Léonard, F.; Talin, A. A. Nat. Nanotechnol. 2011, 6, 773.
[7]
Huang, X.; Qi, X.; Boey, F.; Zhang, H. Chem. Soc. Rev. 2012, 41, 666.
[8]
Wang, Y.; Li, Z.; Wang, J.; Li, J.; Lin, Y. Trends Biotechnol. 2011, 29, 205.
[9]
Li, Y.; Xu, L.; Liu, H.; Li, Y. Chem. Soc. Rev. 2014, 43, 2572.
[10]
Narita, A.; Wang, X.-Y.; Feng, X.; Müllen, K. Chem. Soc. Rev. 2015, 44, 6616.
[11]
Fernández-García, J. M.; Evans, P. J.; Filippone, S.; Herranz, M. Á.; Martín, N. Acc. Chem. Res. 2019, 52, 1565.
[12]
Márquez, I. R.; Castro-Fernández, S.; Millán, A.; Campaña, A. G. Chem. Commun. 2018, 54, 6705.
[13]
Wang, X.-Y.; Yao, X.; Müllen, K. Sci. China Chem. 2019, 62, 1099.
[14]
Shen, Y.; Chen, C.-F. Chem. Rev. 2012, 112, 1463.
[15]
Gingras, M. Chem. Soc. Rev. 2013, 42, 968.
[16]
Gingras, M.; Félix, G.; Peresutti, R. Chem. Soc. Rev. 2013, 42, 1007.
[17]
Gingras, M. Chem. Soc. Rev. 2013, 42, 1051.
[18]
Li, C.; Yang, Y.; Miao, Q. Chem. Asian J. 2018, 13, 884.
[19]
Dhbaibi, K.; Favereau, L.; Crassous, J. Chem. Rev. 2019, 119, 8846.
[20]
Liu, B.; Zhang, Y.; Chen, Y.; Liu, X.; Zhang, L. Chin. J. Org. Chem. 2020, 40, 2879. (in Chinese)
[20]
(刘秉康, 张艳丽, 陈瑜, 刘旭光, 张磊, 有机化学, 2020, 40, 2879.)
[21]
Xu, W.; Wu, L.; Fang, M.; Ma, Z.; Shan, Z.; Li, C.; Wang, H., J. Org. Chem. 2017, 82, 11192.
[22]
Liu, X.; Sun, H.; Xu, W.; Wan, S.; Shi, J.; Li, C.; Wang, H. Org. Chem. Front. 2018, 5, 1257.
[23]
Wang, J.; Wang, G.; Li, C.; Dong, Y.; Ma, Z.; Wang, H. J. Org. Chem. 2021, 86, 4413.
[24]
Wang, X.-Y.; Wang, X. C.; Narita, A.; Wagner, M.; Cao, X. Y.; Feng, X.; Müllen, K. J. Am. Chem. Soc. 2016, 138, 12783.
[25]
Wang, X.-Y.; Narita, A.; Zhang, W.; Feng, X.; Müllen, K. J. Am. Chem. Soc. 2016, 138, 9021.
[26]
Schuster, N. J.; Hernández Sánchez, R.; Bukharina, D.; Kotov, N. A.; Berova, N.; Ng, F.; Steigerwald, M. L.; Nuckolls, C. J. Am. Chem. Soc. 2018, 140, 6235.
[27]
Ma, Z.; Winands, T.; Liang, N.; Meng, D.; Jiang, W.; Doltsinis, N. L.; Wang, Z. Sci. China Chem. 2019, 63, 208.
[28]
Liu, B.; Böckmann, M.; Jiang, W.; Doltsinis, N. L.; Wang, Z. J. Am. Chem. Soc. 2020, 142, 7092.
[29]
Liu, G.; Koch, T.; Li, Y.; Doltsinis, N. L.; Wang, Z. Angew. Chem., nt. Ed. 2019, 58, 178.
[30]
Hosokawa, T.; Takahashi, Y.; Matsushima, T.; Watanabe, S.; Kikkawa, S.; Azumaya, I.; Tsurusaki, A.; Kamikawa, K. J. Am. Chem. Soc. 2017, 139, 18512.
[31]
Yubuta, A.; Hosokawa, T.; Gon, M.; Tanaka, K.; Chujo, Y.; Tsurusaki, A.; Kamikawa, K. J. Am. Chem. Soc. 2020, 142, 10025.
[32]
Zhang, F.; Michail, E.; Saal, F.; Krause, A. M.; Ravat, P. Chem.- Eur. J. 2019, 25, 16241.
[33]
Roy, M.; Berezhnaia, V.; Villa, M.; Vanthuyne, N.; Giorgi, M.; Naubron, J. V.; Poyer, S.; Monnier, V.; Charles, L.; Carissan, Y.; Hagebaum-Reignier, D.; Rodriguez, J.; Gingras, M.; Coquerel, Y. Angew. Chem., nt. Ed. 2020, 59, 3264.
[34]
Grzybowski, M.; Skonieczny, K.; Butenschön, H.; Gryko, D. T. Angew. Chem., nt. Ed. 2013, 52, 9900.
[35]
Grzybowski, M.; Sadowski, B.; Butenschön, H.; Gryko, D. T. Angew. Chem., nt. Ed. 2020, 59, 2998.
[36]
Wu, J.; Pisula, W.; Müllen, K. Chem. Rev. 2007, 107, 718.
[37]
Rempala, P.; Kroulík, J.; King, B. T. J. Org. Chem. 2006, 71, 5067.
[38]
Zhai, L.; Shukla, R.; Wadumethrige, S. H.; Rathore, R. J. Org. Chem. 2010, 75, 4748.
[39]
Rempala, P.; Kroulík, J.; King, B. T. J. Am. Chem. Soc. 2004, 126, 15002.
[40]
Liu, J.; Narita, A.; Osella, S.; Zhang, W.; Schollmeyer, D.; Beljonne, D.; Feng, X.; Müllen, K. J. Am. Chem. Soc. 2016, 138, 2602.
[41]
Pradhan, A.; Dechambenoit, P.; Bock, H.; Durola, F. J. Org. Chem. 2013, 78, 2266.
[42]
Fang, L.; Lin, W.; Shen, Y.; Chen, C.-F. Chin. J. Org. Chem. 2018, 38, 541. (in Chinese)
[42]
(房蕾, 林伟彬, 沈赟, 陈传峰, 有机化学, 2018, 38, 541.)
[43]
Evans, P. J.; Ouyang, J.; Favereau, L.; Crassous, J.; Fernández, I.; Perles, J.; Martín, N. Angew. Chem.. Int. Ed. 2018, 57, 6774.
[44]
Martin, M. M.; Hampel, F.; Jux, N. Chem.-Eur. J. 2020, 26, 10210.
[45]
Xu, Q.; Wang, C.; He, J.; Li, X.; Wang, Y.; Chen, X.; Sun, D.; Jiang, H. Org. Chem. Front. 2021, 8, 2970.
[46]
Chen, Y.; Lin, C.; Luo, Z.; Yin, Z.; Shi, H.; Zhu, Y.; Wang, J. Angew. Chem., nt. Ed. 2021, 60, 7796.
[47]
Tanaka, H.; Inoue, Y.; Mori, T. ChemPhotoChem 2018, 2, 386.
[48]
Mori, T. Chem. Rev. 2021, 121, 2373.
[49]
Zhao, W.-L.; Li, M.; Lu, H.-Y.; Chen, C.-F. Chem. Commun. 2019, 55, 13793.
[50]
Qiu, Z.; Ju, C. W.; Frédéric, L.; Hu, Y.; Schollmeyer, D.; Pieters, G.; Müllen, K.; Narita, A. J. Am. Chem. Soc. 2021, 143, 4661.
[51]
Cruz, C. M.; Márquez, I. R.; Mariz, I. F. A.; Blanco, V.; Sánchez- Sánchez, C.; Sobrado, J. M.; Martín-Gago, J. A.; Cuerva, J. M.; Maçôas, E.; Campaña, A. G. Chem. Sci. 2018, 9, 3917.
[52]
Cruz, C. M.; Castro-Fernández, S.; Maçôas, E.; Cuerva, J. M.; Campaña, A. G. Angew. Chem., nt. Ed. 2018, 57, 14782.
[53]
Medel, M. A.; Tapia, R.; Blanco, V.; Miguel, D.; Morcillo, S. P.; Campaña, A. G. Angew. Chem., nt. Ed. 2021, 60, 6094.
[54]
Medel, M. A.; Cruz, C. M.; Miguel, D.; Blanco, V.; Morcillo, S. P.; Campaña, A. G. Angew. Chem., nt. Ed. 2021, 60, 22051.
[55]
Reger, D.; Haines, P.; Heinemann, F. W.; Guldi, D. M.; Jux, N. Angew. Chem., nt. Ed. 2018, 57, 5938.
[56]
Reger, D.; Haines, P.; Amsharov, K. Y.; Schmidt, J. A.; Ullrich, T.; Bönisch, S.; Hampel, F.; Görling, A.; Nelson, J.; Jelfs, K. E.; Guldi, D. M.; Jux, N. Angew. Chem., nt. Ed. 2021, 60, 18073.
[57]
Dusold, C.; Sharapa, D. I.; Hampel, F.; Hirsch, A. Chem.-Eur. J. 2021, 27, 2332.
[58]
Luo, J.; Xu, X.; Mao, R.; Miao, Q. J. Am. Chem. Soc. 2012, 134, 13796.
[59]
Li, C.; Wu, H.; Zhang, T.; Liang, Y.; Zheng, B.; Xia, J.; Xu, J.; Miao, Q. Chem 2018, 4, 1416.
[60]
Shan, L.; Liu, D.; Li, H.; Xu, X.; Shan, B.; Xu, J. B.; Miao, Q. Adv. Mater. 2015, 27, 3418.
[61]
Li, C.; Wang, Y.; Zhang, T.; Zheng, B.; Xu, J.; Miao, Q. Chem. Asian J. 2019, 14, 1676.
[62]
Arslan, H.; Uribe-Romo, F. J.; Smith, B. J.; Dichtel, W. R. Chem. Sci. 2013, 4, 3973.
[63]
Niu, W.; Fu, Y.; Komber, H.; Ma, J.; Feng, X.; Mai, Y.; Liu, J. Org. Lett. 2021, 23, 2069.
[64]
Fujikawa, T.; Segawa, Y.; Itami, K. J. Am. Chem. Soc. 2015, 137, 7763.
[65]
Fujikawa, T.; Mitoma, N.; Wakamiya, A.; Saeki, A.; Segawa, Y.; Itami, K. Org. Biomol. Chem. 2017, 15, 4697.
[66]
Fujikawa, T.; Segawa, Y.; Itami, K. J. Org. Chem. 2017, 82, 7745.
[67]
Hossain, M. M.; Thakur, K.; Talipov, M. R.; Lindeman, S. V.; Mirzaei, S.; Rathore, R. Org. Lett. 2021, 23, 5170.
[68]
Sun, Z.; Yi, C.; Liang, Q.; Bingi, C.; Zhu, W.; Qiang, P.; Wu, D.; Zhang, F. Org. Lett. 2020, 22, 209.
[69]
Urieta-Mora, J.; Krug, M.; Alex, W.; Perles, J.; Fernández, I.; Molina-Ontoria, A.; Guldi, D. M.; Martín, N. J. Am. Chem. Soc. 2020, 142, 4162.
[70]
Tanaka, H.; Ikenosako, M.; Kato, Y.; Fujiki, M.; Inoue, Y.; Mori, T. Commun. Chem. 2018, 1, 38.
[71]
Hu, Y.; Wang, X.-Y.; Peng, P.-X.; Wang, X.-C.; Cao, X.-Y.; Feng, X.; Müllen, K.; Narita, A. Angew. Chem., nt. Ed. 2017, 56, 3374.
[72]
Hu, Y.; Paternò, G. M.; Wang, X.-Y.; Wang, X.-C.; Guizzardi, M.; Chen, Q.; Schollmeyer, D.; Cao, X.-Y.; Cerullo, G.; Scotognella, F.; Müllen, K.; Narita, A. J. Am. Chem. Soc. 2019, 141, 12797.
[73]
Chang, H.; Liu, H.; Dmitrieva, E.; Chen, Q.; Ma, J.; He, P.; Liu, P.; Popov, A. A.; Cao, X.-Y.; Wang, X.-Y.; Zou, Y.; Narita, A.; Müllen, K.; Peng, H.; Hu, Y. Chem. Commun. 2020, 56, 15181.
[74]
Hong, J.; Xiao, X.; Liu, H.; Fu, L.; Wang, X.-C.; Zhou, L.; Wang, X.-Y.; Qiu, Z.; Cao, X.-Y.; Narita, A.; Müllen, K.; Hu, Y. Chem. Commun. 2021, 57, 5566.
[75]
Xu, Q.; Wang, C.; Zhao, Y.; Zheng, D.; Shao, C.; Guo, W.; Deng, X.; Wang, Y.; Chen, X.; Zhu, J.; Jiang, H. Org. Lett. 2020, 22, 7397.
[76]
Xu, Q.; Wang, C.; Zheng, D.; He, J.; Wang, Y.; Chen, X.; Jiang, H. J. Org. Chem. 2021, 86, 13990.
[77]
Fujikawa, T.; Segawa, Y.; Itami, K. J. Am. Chem. Soc. 2016, 138, 3587.
[78]
Zhou, F.; Huang, Z.; Huang, Z.; Cheng, R.; Yang, Y.; You, J. Org Lett. 2021, 23, 4559.
[79]
Xu, Q.; Wang, C.; Zheng, D.; Wang, Y.; Chen, X.; Sun, D.; Jiang, H. Sci. China Chem. 2021, 64, 590.
[80]
Zhu, Y.; Xia, Z.; Cai, Z.; Yuan, Z.; Jiang, N.; Li, T.; Wang, Y.; Guo, X.; Li, Z.; Ma, S.; Zhong, D.; Li, Y.; Wang, J. J. Am. Chem. Soc. 2018, 140, 4222.
[81]
Rulíšek, L.; Exner, O.; Cwiklik, L.; Jungwirth, P.; Starý, I.; Pospíšil, L.; Havlas, Z. J. Phys. Chem. C 2007, 111, 14948.
[82]
Wang, Y.; Yin, Z.; Zhu, Y.; Gu, J.; Li, Y.; Wang, J. Angew. Chem., nt. Ed. 2019, 58, 587.
[83]
Zhu, Y.; Guo, X.; Li, Y.; Wang, J. J. Am. Chem. Soc. 2019, 141, 5511.
[84]
Cruz, C. M.; Márquez, I. R.; Castro-Fernández, S.; Cuerva, J. M.; Maçòas, E.; Campaña, A. G. Angew. Chem., nt. Ed. 2019, 58, 8068.
[85]
Ma, S.; Gu, J.; Lin, C.; Luo, Z.; Zhu, Y.; Wang, J. J. Am. Chem. Soc. 2020, 142, 16887.
[86]
Castro-Fernández, S.; Cruz, C. M.; Mariz, I. F. A.; Márquez, I. R.; Jiménez, V. G.; Palomino-Ruiz, L.; Cuerva, J. M.; Maçòas, E.; Campaña, A. G. Angew. Chem., nt. Ed. 2020, 59, 7139.
[87]
Yao, X.; Zheng, W.; Osella, S.; Qiu, Z.; Fu, S.; Schollmeyer, D.; Müller, B.; Beljonne, D.; Bonn, M.; Wang, H. I.; Müllen, K.; Narita, A. J. Am. Chem. Soc. 2021, 143, 5654.
[88]
Ma, J.; Fu, Y.; Dmitrieva, E.; Liu, F.; Komber, H.; Hennersdorf, F.; Popov, A. A.; Weigand, J. J.; Liu, J.; Feng, X. Angew. Chem., nt. Ed. 2020, 59, 5637.
[89]
Han, Y.; Xue, Z.; Li, G.; Gu, Y.; Ni, Y.; Dong, S.; Chi, C. Angew. Chem., nt. Ed. 2020, 59, 9026.
[90]
Qiu, Z.; Asako, S.; Hu, Y.; Ju, C. W.; Liu, T.; Rondin, L.; Schollmeyer, D.; Lauret, J. S.; Müllen, K.; Narita, A. J. Am. Chem. Soc. 2020, 142, 14814.
[91]
Shen, C.; Zhang, G.; Ding, Y.; Yang, N.; Gan, F.; Crassous, J.; Qiu, H. Nat. Commun. 2021, 12, 2786.
Outlines

/