REVIEWS

Study on the Application of Photoelectric Technology in the Synthesis of Selenium-Containing Heterocycles

  • Xin Wang ,
  • Yan Zhang ,
  • Kai Sun ,
  • Jianping Meng ,
  • Bing Zhang
Expand
  • a School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001
    b School of Chemistry and Chemical Engineering, Yantai University, Yantai, Shandong 264005
* Corresponding authors. E-mail: ;

Received date: 2021-09-29

  Revised date: 2021-10-14

  Online published: 2021-10-21

Supported by

National Natural Science Foundation of China(21801007)

Abstract

Selenium-containing heterocycles are a kind of important organic molecules, which are widely used in medicine, agrochemicals, organic materials and other fields. Therefore, the introduction of selenium atom into organic molecules is of great significance in synthetic chemistry. Visible light and electrochemical technology is one of the green and sustainable synthesis methods, which has opened up broad application prospects in the fields of bifunctionalization and cyclization of unsaturated bonds and direct functionalization of C—H bonds. In recent years, the development of novel selenium cyclization reaction using photoelectric technology to drive unsaturated bonds and direct selenization reaction of C—H bonds has attracted much attention. Therefore, this paper describes the electrochemical-driven and visible-light-induced synthesis reactions of selenium-containing heterocycles, and discusses the applicable scope and mechanism of some reactions.

Cite this article

Xin Wang , Yan Zhang , Kai Sun , Jianping Meng , Bing Zhang . Study on the Application of Photoelectric Technology in the Synthesis of Selenium-Containing Heterocycles[J]. Chinese Journal of Organic Chemistry, 2021 , 41(12) : 4588 -4609 . DOI: 10.6023/cjoc202109046

References

[1]
Walter, R.; Roy, J. J. Org. Chem. 1971, 36, 2561.
[2]
Huang, G.; Zhao, H.-R.; Meng, Q.-Q.; Zhang, Q.-J.; Dong, J.-Y.; Zhu, B.; Li, S.-S. Eur. J. Med. Chem. 2018, 143, 166.
[3]
(a) Zhao, L.; Li, J.; Li, Y.; Liu, J.; Wirth, T.; Li, Z. Bioorg. Med. Chem. 2012, 20, 2558.
[3]
(b) Wen, Z.; Xu, J.; Wang, Z.; Qi, H.; Xu, Q.; Bai, Z.; Zhang, Q.; Bao, K.; Wu, Y.; Zhang, W. Eur. J. Med. Chem. 2015, 90, 184.
[3]
(c) Goodman, L.; Ross, L. O.; Baker, B. R. J. Org. Chem. 1958, 23, 1251.
[3]
(d) Huang, G.; Zhao, H.-R.; Meng, Q.-Q.; Zhang, Q.-J.; Dong, J.-Y.; Zhu, B.; Li, S.-S. Eur. J. Med. Chem. 2018, 143, 166.
[4]
(a) Min, J.; Wang, P.; Srinivasan, S.; Nwachukwu, J. C.; Guo, P.; Huang, M.; Carlson, K. E.; Katzenellenbogen, J. A.; Nettles, K. W.; Zhou, H. B. Eur. J. Med. Chem. 2013, 56, 3346.
[4]
(b) Mao, F.; Chen, J.; Zhou, Q.; Luo, Z., Huang, L.; Li, X. Bioorg. Med. Chem. Lett. 2013, 23, 6737.
[5]
(a) Jadhav, A. A.; Dhanwe, V. P.; Joshi, P. G.; Khanna, P.-K. Chem. Heterocycl. Compd. 2015, 51, 102.
[5]
(b) Kumar, S.; Sharma, N.; Maurya, I. K.; Bhasin, A. K.; Wangoo, N.; Brandão, P.; Félix, V. K.; Bhasin, K.; Sharma, R. K. Eur. J. Med. Chem. 2016, 123, 916.
[5]
(c) Empel, A.; Kisiel, E.; Wojtyczka, R.; Kępa, M.; Idzik, D.; Sochanik, A.; Wąsik, T.; Zięba, A. Molecules 2018, 23, 218.
[6]
(a) Sahu, P. K.; Kim, G.; Yu, J.; Ahn, J. Y.; Song, J.; Choi, Y.; Jin, X.; Kim, J. H.; Lee, S. K.; Park, S.; Jeong, L. S. Org. Lett. 2014, 16, 5796.
[6]
(b) Xiong, L.; Liu, S.; Chen, S.; Xiao, Y.; Zhu, B.; Gao, Y.; Zhang, Y.; Chen, B.; Luo, J.; Deng, Z.; Chen, X.; Wang, L.; Chen, S. Nat. Commun. 2019, 10, 1688.
[6]
(c) Yu, J.; Kim, J. H.; Lee, H. W.; Alexander, V.; Ahn, H. C.; Choi, W. J.; Choi, J.; Jeong, L. S. Chem.-Eur. J. 2013, 19, 5528.
[7]
(a) Sarma, B. K.; Mugesh, G. Chem.-Eur. J. 2008, 14, 10603.
[7]
(b) Nogueira, C. W.; Quinhones, E. B.; Jung, E. A.; Zeni, G.; Rocha, J. B. Inflammation Res. 2003, 52, 56.
[7]
(c) Lee, D. Y.; Li, H.; Lim, H. J.; Lee, H. J.; Jeon, R.; Ryu, J. H. J. Med. Food 2012, 15, 992.
[8]
(a) Nishiguchi, T.; Yoshikawa, Y.; Yasui, H. Int. J. Mol. Sci. 2017, 18, 2647.
[8]
(b) Meltzer-Mats, E.; Babai-Shani, G.; Pasternak, L.; Uritsky, N.; Getter, T.; Viskind, O.; Eckel, J.; Cerasi, E.; Senderowitz, H.; Sasson, S.; Gruzman, A. J. Med. Chem. 2013, 56, 5335.
[9]
(a) Victoria, F. N.; Anversa, R.; Penteado, F.; Castro, M.; Lenardão, E. J.; Savegnago, L. Eur. J. Pharmacol. 2014, 742, 131.
[9]
(b) Donato, F.; De Gomes, M. G.; Goes, A. T.; Seus, N.; Alves, D.; Jesse, C. R.; Savegnago, L. Life Sci. 2013, 93, 393.
[9]
(c) Jin, Q.; Fu, Z.; Guan, L.; Jiang, H. Mar. Drugs 2019, 17, 430.
[9]
(d) Goto, K.; Nagahama, M.; Mizushim, T.; Shimada, K.; Kawashima, T.; Okazaki, R. Org. Lett. 2001, 3, 3569.
[10]
(a) Freudendahl, D. M.; Santoro, S.; Shahzad, S. A.; Santi, C.; Wirth, T. Angew. Chem., Int. Ed. 2009, 48, 8409.
[10]
(b) Modha, S. G.; Mehta, V. P.; Van der Eycken, E. V. Chem. Soc. Rev. 2013, 42, 5042.
[10]
(c) Mahmudov, K. T.; Kopylovich, M. N.; Guedes da Silva, M. F.; Pombeiro, A.-J. Dalton Trans. 2017, 46, 10121.
[10]
(d) Brutchey, R. L. Acc. Chem. Res. 2015, 48, 2918.
[11]
(a) Albert, E. E.; Do nascimento, V.; Braga, A. L. J. Am. Chem. Soc. 2010, 21, 2032.
[11]
(b) Xu, L.; Wang, F.; Chen, F.; Zhu, S.-Q.; Chu, L.-L. 2022, 42, DOI: 10.6023/cjoc202109002. (in Chinese)
[11]
( 徐磊, 王方, 陈凡, 朱圣卿, 储玲玲, 有机化学, 2022, 42, DOI: 10.6023/cjoc202109002.)
[12]
(a) Pan, C.; Liu, P.; Wu, A.-G.; Li, M.; Wen, L.-R.; Guo, W.-S. Chin. J. Org. Chem. 2020, 40, 2855. (in Chinese)
[12]
( 潘超, 刘鹏, 武安国, 李明, 文丽荣, 郭维斯, 有机化学, 2020, 40, 2855.)
[12]
(b) Mukherjee, A. J.; Zade, S. S.; Singh, H. B.; Sunoj, R. B. Chem. Rev. 2010, 110, 4357.
[12]
(c) Nogueira, C. W.; Zeni, G.; Rocha, J.-B. Chem. Rev. 2004, 104, 6255.
[13]
Meng, X.-J.; Zhong, P.-F.; Wang, Y.-M.; Wang, H.-S.; Tang, H.-T.; Pan, Y.-M. Adv. Synth. Catal. 2020, 362, 506.
[14]
Mallick, S.; Baidya, M.; Mahanty, K.; Maiti, D.; Sarkara, S. D. Adv. Synth. Catal. 2020, 362, 1046.
[15]
Hua, J.-W.; Fang, Z.; Xu, Jia.; Bian, M.-X.; Liu, C.-K.; He, W.; Zhu, N.; Yang, Z.; Guo, K. Green Chem. 2019, 21, 4706.
[16]
(a) Dakova, B.; Lamberts, L.; Evers, M. Electrochim. Acta 1994, 39, 2363.
[16]
(b) Kunai, A.; Harada, J.; Izumi, J.; Tachihara, H.; Sasaki, K. Electrochim. Acta 1983, 28, 1361.
[16]
(c) Torii, S.; Uneyama, K.; Ono, M.; Bannou, T. J. Am. Chem. Soc. 1981, 103, 4606.
[17]
Guan, Z.-P.; Wang, Y.-K; Wang, H.-M.; Huang, Y.-G.; Wang, S.-Y.; Tang, H.-D.; Zhang, H.; Lei, A.-W. Green Chem. 2019, 21, 4976.
[18]
Wang, X.-Y.; Zhong, Y.; Mo, Z.-Y.; Wu, S.-H.; Xu, Y.-L.; Tang, H.-T.; Pan, Y.-M. Adv. Synth. Catal. 2021, 363, 208.
[19]
Hua, J.-W.; Fang, Z.; Bian, M.-X.; Ma, T.; Yang, M.; Xu, J.; Liu, C.-K.; He, W.; Zhu, N.; Yang, Z.; Guo, K. ChemSusChem 2020, 13, 2053.
[20]
(a) Torii, S.; Uneyama, K.; Ono, M.; Bannou, T. J. Am. Chem. Soc. 1981, 103, 4606.
[20]
(b) Dakova, B.; Lamberts, L.; Evers, M. Electrochim. Acta 1994, 39, 2363.
[20]
(c) Sun, K.; Wang, X.; Fu, F.; Zhang, C.; Chen, Y.; Liu, L. Green Chem. 2017, 19, 1490.
[20]
(d) Kim, Y. J.; Kim, D. Y. Org. Lett. 2019, 21, 1021.
[20]
(e) Yang, X.-H.; Yang, X.-H.; Wei, W.-T.; Song, R.-J.; Li, J.-H. Adv. Synth. Catal. 2015, 357, 1161.
[20]
(f) Reddy, C. R.; Yarlagadda, S.; Ramesh, B.; Reddy, M. R.; Sridhar, B.; Reddy, B. V. Eur. J. Org. Chem. 2017, 2017, 2332.
[21]
Scheide, M. R.; Schneider, A. R.; Jardim, G. A. Martins, G. M.; Durigon, D. C.; Saba, S.; Rafiqueb, J.; Braga, A. L. Org. Biomol. Chem. 2020, 18, 4916.
[22]
Kharma, A.; Jacob, C.; Bozzi, A. O.; Jardim, G. M.; Braga, A. L.; Salomão, K.; Gatto, C. C.; Silva, M. F.; Pessoa, C.; Stangier, M.; Ackermann, L.; Júnior, E. N. Eur. J. Org. Chem. 2020, 4474.
[23]
Bian, M.-X.; Hua, J.-W.; Ma, T.; Xu, J.; Cai, C.; Yang, Z.; Liu, C.-K.; He, W.; Fang, Z.; Guo, K. Org. Biomol. Chem. 2021, 19, 3207.
[24]
Yu, K.; Kong, X.-Q.; Yang, J.-J.; Li, G. D.; Xu, B.; Chen, Q.-J. J. Org. Chem. 2021, 86, 917.
[25]
Wang, Q.; Ma, X.-L.; Chen, Y.-Y.; Jiang, C.-N.; Xu, Y.-L. Eur. J. Org. Chem. 2020, 2020, 4384.
[26]
Chen, J.-Y.; Zhong, C.-T.; Gui, Q.-W.; Zhou, Y.-M.; Fang, Y.-Y.; Liu, K.-J.; Lin, Y.-W.; Cao, Z.; He, W.-M. Chin. Chem. Lett. 2021, 32, 475.
[27]
Cui, T.; Zhang, X.-F.; Lin, J.; Zhu, Z.-T.; Liu, P.; Sun, P.-P. Synlett 2020, 267.
[28]
Liu, X.; Wang, Y.-J.; Song, D.; Wang, Y.-H.; Cao, H. Chem. Commun. 2020, 56, 15325.
[29]
Tan, H.; Li, H.; Ji, W.; Wang, L. Angew. Chem., Int. Ed. 2015, 54, 8374.
[30]
(a) Nicewicz, D. A.; MacMillan, D. W. Science 2008, 322, 77.
[30]
(b) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. Chem. Rev. 2013, 113, 5322.
[30]
(c) Yoon, T. P.; Ischay, M. A.; Du, J. Nat. Chem. 2010, 2, 527.
[30]
(d) Chen, J.-Y.; Zhong, C.-T.; Gui, Q.-W.; Zhou, Y.-M.; Fang, Y.-Y.; Liu, K.-J.; Lin, Y.-W.; Cao, Z.; He, W.-M. Chin. Chem. Lett. 2021, 32, 01.
[31]
(a) Yang, W.; Yang, S.; Li, P.; Wang, L. Chem. Commun. 2015, 51, 7520.
[31]
(b) Chen, Y.; Lu, L.-Q.; Yu, D.-G.; Zhu, C.-J.; Xiao, W.-J. Sci. China Chem. 2019, 62, 24.
[31]
(c) Liu, Y.; Lin, L.; Han, Y.; Liu, Y. Chin. J. Org. Chem. 2020, 40, 4216. (in Chinese)
[31]
( 刘洋, 林立青, 韩莹徽, 刘颖杰, 有机化学, 2020, 40, 4216.)
[31]
(d) Yang, W.; Zhang, M.; Chen, W.; Yang, X.; Feng, J. Chin. J. Org. Chem. 2020, 40, 4060. (in Chinese)
[31]
( 杨文超, 张明明, 陈旺, 杨小虎, 冯建国, 有机化学, 2020, 40, 4060.)
[31]
(e) He, S.-Q.; Li, H.-C.; Chen, X.-L.; Krylov, I. B.; Terentev, A. O.; Qu, L.-B.; Yu, B. Chin. J. Org. Chem. 2021, 41, 4661. (in Chinese)
[31]
( 贺帅旗, 李昊聪, 陈晓岚, Igor B. Krylov, Alexander O. Terentev, 屈凌波, 於兵, 有机化学, 2021, 41, 4661.)
[31]
(f) Yang, W.-C.; Zhang, M.-M.; Sun, Y.; Chen, C.-Y.; Wang, L. Org. Lett. 2021, 23, 6691.
[32]
Mitamura, T.; Iwata, K.; Nomoto, A.; Ogawa, A. Org. Biomol. Chem. 2011, 9, 3768.
[33]
Conner, E. S.; Crocker, K. E.; Fernando, R. G.; Fronczek, F. R.; Stanley, G. G.; Ragains, J. R. Org. Lett. 2013, 15, 5558.
[34]
Sahoo, H.; Mandal, A.; Dana, S.; Baidya, M. Adv. Synth. Catal. 2018, 360, 1099.
[35]
(a) Jin, D.-P.; Gao, P.; Chen, D.-Q.; Chen, S.; Wang, J.; Liu, X.-Y.; Liang, Y.-M. Org. Lett. 2016, 18, 3486.
[35]
(b) Wen, J.-W.; Wei, W.; Xue, S.-N.; Yang, D.-S.; Lou, Y.; Gao, C.-Y.; Wang, H. J. Org. Chem. 2015, 80, 4966.
[35]
(c) Kobiki, Y.; Kawaguchi, S.; Ogawa, A. Tetrahedron Lett. 2013, 54, 5453.
[36]
Wei, W.; Cui, H.; Yang, D.; Yue, H.; He, C.; Zhang, Y.; Wang, H. Green Chem. 2017, 19, 5608.
[37]
Shi, Q.; Li, P.-H.; Zhang, Y.; Wang, L. Org. Chem. Front. 2017, 4, 1322.
[38]
Ma, X.-Li.; Wang, Q.; Feng, X.-Y.; Mo, Z.-Y.; Pan, Y.-M.; Chen, Y.-Y.; Xin, M.; Xu, Y.-L. Green Chem. 2019, 21, 3547.
[39]
(a) Huang, M.-H.; Hao, W.-J.; Li, G.; Tu, S.-J.; Jiang, B. Chem. Commun. 2018, 54, 10791.
[39]
(b) Zhu, S.; Pathigoolla, A.; Lowe, G.; Walsh, D. A.; Cooper, M.; Lewis, W.; Lam, H. W. Chem.-Eur. J. 2017, 23, 17598.
[39]
(c) Kawaguchi, S.; Shirai, T.; Ohe, T.; Nomoto, A.; Sonoda, M.; Ogawa, A. J. Org. Chem. 2009, 74, 1751.
[39]
(d) Kobiki, Y.; Kawaguchi, S.; Ogawa, A. Tetrahedron Lett. 2013, 54, 545.
[40]
Sahoo, S. R.; Das, B.; Sarkar, D.; Henkel, F.; Reuter, H. Eur. J. Org. Chem. 2020, 2020, 891.
[41]
Jung, H. I.; Kim, D. Y. Synlett 2019, 30, 1361.
[42]
Zhang, Q.-B.; Yuan, P.-F.; Kai, L.-L.; Liu, K.; Ban, Y.-L.; Wang, X.-Y.; Wu, L.-Z.; Liu, Q. Org. Lett. 2019, 21, 885.
[43]
(a) Ortgies, S.; Rieger, R.; Rode, K.; Koszinowski, K.; Kind, J.; Thiele, C. M.; Rehbein, J.; Breder, A. Adv. Synth. Catal. 2017, 7, 7578.
[43]
(b) Wilken, M.; Ortgies, S.; Breder, A.; Siewert, I. Adv. Synth. Catal. 2018, 8, 10901.
[43]
(c) Minakata, S.; Morino, Y.; Oderaotoshi, Y.; Komatsu, M. Org. Lett. 2006, 8, 3335.
[43]
(d) Nagaraju, K.; Rajesh, N.; Krishna, P. R. Synth. Commun. 2018, 48, 1001.
[44]
Mutra, M. R.; Kudale, V. S.; Li, J.; Tsaia, W. H.; Wang, J. J. Green Chem. 2020, 22, 2288.
[45]
Ye, Z.-P.; Xia, P.-J.; Liu, F.; Hu, Y.-Z.; Song, D.; Xiao, J.-A.; Huang, P.; Xiang, H.-Y.; Chen, X.-Q.; Yang, H. J. Org. Chem. 2020, 85, 5670.
[46]
Tran, C. C.; Kawaguchi, S.; Sato, F.; Nomoto, A.; Ogawa, A. J. Org. Chem. 2020, 85, 7258.
[47]
Zhou, X.-J.; Liu, H.-Y.; Mo, Z.-Y.; Ma, X.-L.; Chen, Y.-Y.; Tang, H.-T.; Pan, Y.-M.; Xu, Y.-L. Chem. Asian J. 2020, 15, 1536.
[48]
Zhou, J.-L.; Li, W.; Zheng, H.-T.; Pei, Y.-Y.; Liu, X.; Cao, H. Org. Lett. 2021, 23, 2754.
[49]
Hou, H.; Sun, Y.; Pan, Y.-J.; Yu, H.-G.; Han, Y.; Shi, Y.-C.; Yan, C.-G.; Zhu, S.-Q. J. Org. Chem. 2021, 86, 1273.
[50]
Kundu, D.; Ahammed, S.; Ranund, B. C. Org. Lett. 2014, 16, 1814.
[51]
Gandeepan, P.; Mo, J.; Ackermann, L. Chem. Commun. 2017, 53, 5906.
[52]
Zhang, Q.-B.; Ban, Y.-L.; Yuan, P.-F.; Peng, S.-J.; Fang, J.-G.; Wu, L.-Z.; Liu, Q. Green Chem. 2017, 19, 5559.
[53]
Andal, T.; Das, S.; Sarkar, S. D. Adv. Synth. Catal. 2019, 361, 3200.
[54]
Yang, D.-S.; Li, G.-Q.; Xing, C.-Y.; Cui, W.-W.; Li, K.-X.; Wei, W. Org. Chem. Front. 2018, 5, 2974.
[55]
Jin, J.; MacMillan, D. W. Angew. Chem., Int. Ed. 2015, 54, 1565.
[56]
Devari, S.; Shah, B. A. Chem. Commun. 2016, 52, 1490.
[57]
Zhao, Y.-T.; Huang, B.-B.; Yang, C.; Xia, W.-J. Org. Lett. 2016, 18, 3326.
[58]
Ghiazza, C.; Debrauwer, V.; Monnereau, C.; Khrouz, L.; Medebielle, M. D.; Billard, T. D.; Tlili, A. Angew. Chem., Int. Ed. 2018, 57, 11781.
[59]
Kumaraswamy, G.; Ramesh, V.; Gangadhar, M.; Vijaykumar, S. Asian J. Org. Chem. 2018, 7, 1689.
[60]
Saba, S.; Rafifique, J.; Franco, M. S.; Schneider, A. R.; Espíndola, L.; Silva, D. O.; Braga, A. L. Org. Biomol. Chem. 2018, 16, 880.
[61]
Ghiazzaa, C.; Monnereaub, C.; Khrouzb, L.; Médebiellea, M.; Billard, T.; Tlili, A. Synlett 2018, 29, 777.
[62]
Rathore, V.; Kumar, S. Green Chem. 2019, 21, 2670.
[63]
Lemir, I. D.; Castro-Godoy, W. D.; Heredia, A. A.; Schmidt, L. C.; Arguella, J. E. RSC Adv. 2019, 9, 22685.
[64]
Heredia, A. A.; Soria-Castro, S. M.; Castro-Godoy, W. D.; Lemir, I. D.; Lopez-Vidal, M.; Bisogno, F. R.; Argüello, J. E.; Oksdath-Mansilla, G. Org. Process Res. Dev. 2020, 24, 540.
[65]
Liu, J.-J.; Tian, M.-M.; Li, Y.-X.; Shan, X.-W.; Li, A.-K.; Lu, K.; Fagnoni, M.; Protti, S.; Zhao, X. Eur. J. Org. Chem. 2020, 47, 7358.
Outlines

/