REVIEWS

Visible Light-Promoted Transformation of Diazo Compounds via the Formation of Free Carbene as Key Intermediate

  • Baogui Cai ,
  • Jun Xuan
Expand
  • Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei 230601
* Corresponding author. E-mail:

Received date: 2021-09-26

  Revised date: 2021-10-20

  Online published: 2021-10-29

Supported by

National Natural Science Foundation of China(21971001); National Natural Science Foundation of China(21702001)

Abstract

Carbene is one of the most important synthetic intermediates in organic synthesis. In the past few decades, transition-metal catalyzed carbene transfer reactions have made remarkable development. Recently, visible light-promoted transformation of diazo compounds through the formation of free carbene as key intermediate begun to rise. The reaction only need visible light as the sole energy source which meets the concept of green chemistry. Since the pioneering works developed by the groups of Diaves and Zhou, photo-promoted transformation of diazo compounds has attracted more and more attentions. On the basis of previous work, the latest progress in this field is further improved, which mainly focuses on the recent new transformation reactions of diazo compounds under visible light irradiation and the contributions reported from Chinese research group. The future development direction, as well as challenges in this field is prospected.

Cite this article

Baogui Cai , Jun Xuan . Visible Light-Promoted Transformation of Diazo Compounds via the Formation of Free Carbene as Key Intermediate[J]. Chinese Journal of Organic Chemistry, 2021 , 41(12) : 4565 -4574 . DOI: 10.6023/cjoc202109040

References

[1]
Meerwein, H.; Rathjen, H.; Werner, H. Ber. Dtsch. Chem. Ges. 1942, 75, 1610.
[2]
Kirmse, W. Carbene Chemistry, Academic Press, New York, 1971, Vol. 1, pp. 9-84.
[3]
Skell, P. S.; Etter, R. M. Proc. Chem. Soc. London 1961, 443.
[4]
(a) Ford, A.; Miel, H.; Ring, A.; Slattery, C. N.; Maguire, A. R.; McKervey, M. A. Chem. Rev. 2015, 115, 9981.
[4]
(b) Xia, Y.; Qiu, D.; Wang, J. Chem. Rev. 2017, 117, 13810.
[4]
(c) Liu, L.; Zhang, J.-L. Chin. J. Org. Chem. 2017, 37, 1117. (in Chinese)
[4]
( 刘路, 张俊良, 有机化学, 2017, 37, 1117.)
[4]
(d) Yan, G.; Kuang, C.; Peng, C.; Wang, J. Chin. J. Org. Chem. 2009, 29, 813. (in Chinese)
[4]
( 严国兵, 匡春香, 彭程, 王剑波, 有机化学, 2009, 29, 813.)
[4]
(e) Tang, M.; Xing, D.; Cai, M.; Hu, W. Chin. J. Org. Chem. 2014, 34, 1268. (in Chinese)
[4]
( 唐敏, 邢栋, 蔡茂强, 胡文浩, 有机化学, 2014, 34, 1268.)
[5]
(a) Xuan, J.; Xiao, W.-J. Angew. Chem., nt. Ed. 2012, 51, 6828.
[5]
(b) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
[5]
(c) Chen, Y.; Lu, L.-Q.; Yu, D.-G.; Zhu, C.-J.; Xiao, W.-J. Sci. China Chem. 2019, 62, 24.
[5]
(d) Cai, B.-G.; Xuan, J.; Xiao, W.-J. Sci. Bull. 2019, 64, 337.
[5]
(e) Xuan, J.; He, X.-K.; Xiao, W.-J. Chem. Soc. Rev. 2020, 49, 2546.
[6]
(a) Jurberg, I. D.; Davies, H. M. L. Chem. Sci. 2018, 9, 5112.
[6]
(b) Xiao, T.; Mei, M.; He, Y.; Zhou, L. Chem. Commun. 2018, 54, 8865.
[7]
Jana, S.; Pei, C.; Empel, C.; Koenigs, R. M. Angew. Chem., nt. Ed. 2021, 60, 13271.
[8]
Ciszewski, Ł. W.; Rybicka-Jasińska, K.; Gryko, D. Org. Biomol. Chem. 2019, 17, 432.
[9]
(a) Yang, Z.; Stivanin, M. L.; Jurberg, I. D.; Koenigs, R. M. Chem. Soc. Rev. 2020, 49, 6833.
[9]
(b) Durka, J.; Turkowska, J.; Gryko, D. ACS Sustainable Chem. Eng. 2021, 9, 8895.
[10]
(a) Xu, Y.; Lv, G.; Yan, K.; He, H.; Li, J.; Luo, Y.; Lai, R.; Hai, L.; Wu, Y.; Chem. Asian J. 2020, 15, 1945.
[10]
(b) Yan, K.; He, H.; Li, J.; Luo, Y.; Lai, R.; Guo, L.; Wu, Y. Chin. Chem. Lett. 2021, DOI: 10.1016/j.cclet.2021.05.031.
[11]
Guo, Y.; Nguyen, T. V.; Koenigs, R. M. Org. Lett. 2019, 21, 8814.
[12]
Zhao, S.; Cheng, X.-X.; Gao, N.; Qian, M.; Chen, X. J. Org. Chem. 2021, 86, 7131.
[13]
Reiser, O. Isr. J. Chem. 2016, 56, 531.
[14]
(a) Empel, C.; Koenigs, R. M. J. Flow Chem. 2020, 10, 157.
[14]
(b) Hommelsheim, R.; Guo, Y.; Yang, Z.; Empel, C.; Koenigs, R. M. Angew. Chem., nt. Ed. 2019, 58, 1203.
[15]
Klöpfer, V.; Eckl, R.; Floß, J.; Roth, P. M. C.; Reiser, O.; Barham, J. P. Green Chem. 2021, 23, 6366.
[16]
Guha, S.; Gadde, S.; Kumar, N.; Black, D. S.; Sen, S. J. Org. Chem. 2021, 86, 5234.
[17]
Ford, A.; Miel, H.; Ring, A.; Slattery, C. N.; Maguire, A. R.; McKervey, M. A. Chem. Rev. 2015, 115, 9981.
[18]
(a) He, F.; Li, F.; Koenigs, R. M. J. Org. Chem. 2020, 85, 1240.
[18]
(b) He, F.; Koenigs, R. M. Chem. Commun. 2019, 55, 4881.
[18]
(c) Stivanin, M. L.; Fernandes, A. A. G.; Silva, A. F.; Okada Jr, C. Y.; Jurberg, I. D. Adv. Synth. Catal. 2020, 362, 1106.
[19]
Itsuno, S.; Matsumoto, T.; Sato, D.; Inoue, T. J. Org. Chem. 2000, 65, 5879.
[20]
Qian, L.; Cai, B.-G.; Li, L.; Xuan, J. Org. Lett. 2021, 23, 6951.
[21]
Lu, F.-D.; He, G.-F.; Lu, L.-Q.; Xiao, W.-J. Green Chem. 2021, 23, 5379.
[22]
Cai, B.-G.; Chen, Z.-L.; Xu, G.-Y.; Xuan, J.; Xiao, W.-J. Org. Lett. 2019, 21, 4234.
[23]
Cai, B.-G.; Li, Q.; Zhang, Q,; Li, L.; Xuan, J. Org. Chem. Front. 2021, 8, 5982.
[24]
(a) Zhou, S.-J.; Cheng, X.; Hu, C.-X.; Xu, G.-Y.; Xiao, W.-J.; Xuan, J. Sci. China Chem. 2021, 64, 61.
[24]
(b) Cheng, X.; Zhou, S.-J.; Xu, G.-Y.; Wang, L.; Yang, Q.-Q.; Xuan, J. Adv. Synth. Catal. 2020, 362, 523.
[25]
Zhou, S.-J.; Cai, B.-G.; Hu, C.-X.; Cheng, X.; Li, L.; Xuan, J. Chin. Chem. Lett. 2021, 32, 2577.
[26]
Yang, J.; Wang, G.; Zhou, H.; Li, Z.; Ma, B.; Song, M.; Sun, R.; Huo, C. Org. Biomol. Chem. 2021, 19, 394.
[27]
Yang, J.; Duan, J.; Wang, G.; Zhou, H.; Ma, B.; Wu, C.; Xiao, J. Org. Lett. 2020, 22, 7284.
[28]
Maiti, D.; Das, R.; Sen, S. J. Org. Chem. 2021, 86, 2522.
[29]
Qian, L.-Z.; Yan, X.; Cui, Y.-S.; Sun, Q.; Duan, X.; Zhuang, K.-Q.; Chen, L.; Qiu, J.-K.; Guo, K. Adv. Synth. Catal. 2020, 362, 5093.
[30]
Yang, J.; Wang, G.; Chen, S.; Ma, B.; Zhou, H.; Song, M.; Liu, C.; Huo, C. Org. Biomol. Chem. 2020, 18, 9494.
[31]
Kirmse, W.; Kapps, M. Chem. Ber. 1968, 101, 994.
[32]
Hommelsheim, R.; Guo, Y.; Yang, Z.; Empel, C.; Koenigs, R. M. Angew. Chem., nt. Ed. 2019, 58, 1203.
[33]
O’Hagan, D. Chem. Soc. Rev. 2008, 37, 308.
[34]
Yang, J.; Wang, J.; Huang, H.; Qin, G.; Jiang, Y.; Xiao, T. Org. Lett. 2019, 21, 2654.
[35]
Wang, Z.; Xu, X.; Kwon, O. Chem. Soc. Rev. 2014, 43, 2927.
[36]
Lu, J.; Li, L.; He, X.-K.; Xu, G.-Y.; Xuan, J. Chin. J. Chem. 2021, 39, 1646.
[37]
Khade, V. V.; Thube, A. S.; Warghude, P. K.; Bhat, R. G. Tetrahedron Lett. 2021, 77, 153258.
[38]
Xie, J.; Suleman, M.; Wang, Z.; Mao, X.; Mao, B.; Fan, J.; Lu, P.; Wang, Y. Org. Biomol. Chem. 2021, 19, 6341.
[39]
Cheng, R.; Qi, C.; Wang, L.; Xiong, W.; Liu, H.; Jiang, H. Green Chem. 2020, 22, 4890.
[40]
Crespo, L.; Sanclimens, G.; Pons, M.; Giralt, E.; Royo, M.; Albericio, F. Chem. Rev. 2005, 105, 1663.
[41]
Cai, B.-G.; Luo, S.-S.; Li, L.; Li, L.; Xuan, J.; Xiao, W.-J. CCS Chem. 2020, 2, 2764.
[42]
Cai, B.-G.; Li, L.; Xu, G.-Y.; Xiao, W.-J; Xuan, J. Photochem. Photobiol. Sci. 2021, 20, 823.
[43]
Roy, S.; Kumar, G.; Chatterjee, I. Org. Lett. 2021, 23, 6709.
[44]
Cheng, X.; Cai, B.-G.; Mao, H.; Lu, J.; Li, L.; Wang, K.; Xuan, J. Org. Lett. 2021, 23, 4109.
[45]
Chen, J.; Liu, S.; Lv, X.; Hong, K.; Lei, J.; Xu, X.; Hu, W. J. Org. Chem. 2020, 85, 13920
[46]
Ye, C.; Cai, B.-G.; Lu, J.; Cheng, X.; Li, L.; Pan, Z.-W. Xuan, J. J. Org. Chem. 2021, 86, 1012.
Outlines

/