REVIEWS

Advances on the Synthesis and Application of α,β-Unsaturated Nitrones

  • Ning Zou ,
  • Xiaoting Qin ,
  • Zhixin Wang ,
  • Weimin Shi ,
  • Dongliang Mo
Expand
  • a State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004
    b School of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi 545006
* Corresponding authors. E-mail: ;

Received date: 2021-09-03

  Revised date: 2021-10-30

  Online published: 2021-11-10

Supported by

National Natural Science Foundation of China(21871062); National Natural Science Foundation of China(22071035); Natural Science Foundation of Guangxi Province(2018GXNSFAA281329); Graduate Innovation Project of Guangxi Education(YCBZ2021039); “One thousand Young and Middle-Aged College and University Backbone Teachers Cultivation Program” of Guangxi

Abstract

Nitrones, served as one of the most important 1,3-dipoles in organic synthetic chemistry, can participate in various organic synthetic reactions to synthesize various heterocyclic compounds, such as nucleophilic addition, cycloaddition reaction, rearrangement reaction, C—H bond activation, etc. They are very important organic building blocks for the further construction of complex molecules. In recent years, α,β-unsaturated nitrone has attracted widespread attention from synthetic chemists because of its α,β-unsaturated bond containing rich chemical transformations, and can take part in various new chemical conversions to construct new structural heterocyclic compounds. The new strategies for the preparation of α,β-unsaturated nitrones in the past ten years, and their applications to construct nitrogen heterocyclic compounds, including O-transfer reaction, addition of nucleophiles and radical reagents, and various cycloaddition reactions, are reviewed.

Cite this article

Ning Zou , Xiaoting Qin , Zhixin Wang , Weimin Shi , Dongliang Mo . Advances on the Synthesis and Application of α,β-Unsaturated Nitrones[J]. Chinese Journal of Organic Chemistry, 2021 , 41(12) : 4535 -4553 . DOI: 10.6023/cjoc202109007

References

[1]
(a) Smith, L. L. Chem. Rev. 1938, 38, 193.
[1]
(b) Bartoli, G.; Marcantoni, E.; Petrini, M. J. Org. Chem. 1990, 55, 4456.
[1]
(c) Braum, K. R.; Freysoldt, T. H. E.; Wierschem, F. Chem. Soc. Rev. 2005, 34, 507.
[1]
(d) Pellissier, H. Tetrahedron 2007, 63, 3235.
[1]
(e) Nair, V.; Suja, T. D. Tetrahedron 2007, 63, 12247.
[1]
(f) Brandi, A.; Cardona, F.; Cicchi, S.; Cordero, F. M.; Goti, A. Chem.-Eur. J. 2009, 15, 7808.
[1]
(g) Najera, C.; Sansano, J. M. Org. Biomol. Chem. 2009, 7, 4567.
[1]
(h) Kissane, M.; Maguire, A. R. Chem. Soc. Rev. 2010, 39, 845.
[2]
(a) Saha, N.; Biswas, T.; Chattopadhyay, S. K. Org. Lett. 2011, 13, 5128.
[2]
(b) Hodges, A. J.; Adams, J. P.; Bond, A. D.; Holmes, A, B.; Press, N. J.; Roughley, S. D.; Ryan, J. H.; Saubern, S.; Smith, C. J.; Turnbull, M. D.; Newton, A. F. Org. Biomol. Chem. 2012, 10, 8963.
[2]
(c) Martella, D.; Cardona, F.; Parmeggiani, C.; Franco, F.; Tamayo, J. A.; Robina, I.; Moreno-Clavijo, E.; Moreno-Vargas, A. J.; Goti, A. Eur. J. Org. Chem. 2013, 19, 4047.
[2]
(d) Ideue, E.; Shimokawa, J.; Fukuyama, T. Org. Lett. 2015, 17, 4964.
[3]
(a) Breslow, R. Angew. Chem., Int. Ed. 1968, 7, 565.
[3]
(b) Black, D. S. C.; Crozier, R. F.; Davis, V. C. Synthesis 1975, 205.
[3]
(c) Claire, A. Future Med. Chem. 2012, 4, 9.
[3]
(d) Ma, L.-L.; Wang, W.; Wang, G.-C. RSC Adv. 2016, 6, 53839.
[3]
(e) Clementson, S.; Radaelli, A.; Fjebye, K.; Tanner, D.; Jessing, M. Org. Lett. 2019, 21, 4763.
[3]
(f) Zhao, D.; Zhang, J.; Xie, Z. J. Am. Chem. Soc. 2015, 137, 13938.
[4]
(a) Zhou, Z.; Liu, G.; Chen, Y.; Lu, X. Adv. Synth. Catal. 2015, 357, 2944.
[4]
(b) Wang, H.; Moselage, M.; Gonzalez, M. J.; Ackermann, L. ACS Catal. 2016, 6, 2705.
[4]
(c) Bai, D.; Jia, Q.; Xu, T.; Zhang, Q.; Wu, F.; Ma, C.; Liu, B.; Chang, J.; Li, X. J. Org. Chem. 2017, 82, 9877.
[4]
(d) Pandey, A. K.; Kang, D.; Han, S. H.; Lee, H.; Mishra, N. K.; Kim, H. S.; Jung, Y. H.; Hong, S.; Kim, I. S. Org. Lett. 2018, 20, 4632.
[4]
(e) Li, Y.; Xie, F.; Liu, Y.; Yang, X.; Li, X. Org. Lett. 2018, 20, 437.
[4]
(f) Murahashi, S.-I.; Imada, Y. Chem. Rev. 2019, 119, 4684.
[5]
For some examples with alkenes, see: (a) Confalone, P. N.; Huie, E. M. Org. React. 2004, 36, 1.
[5]
(b) Morita, N.; Fukui, K.; Irikuchi, J.; Sato, H.; Takano, Y.; Okamoto, I.; Ishibashi, H.; Tamura, O. J. Org. Chem. 2008, 73, 7164.
[5]
(c) Nguyen, T. B.; Martel, A.; Dhal, R.; Dujardin, G. Org. Lett. 2008, 10, 4493.
[5]
(d) Bokach, N. A.; Kuznetsov, M. L.; Kukushkin, V. Y. Coord. Chem Rev. 2011, 255, 2946.
[5]
(e) Lahiri, R.; Palanivel, A.; Kulkarni, S. A.; Vankar, Y. D. J. Org. Chem. 2014, 79, 10786.
[5]
(f) Kumar, C. V. S.; Ramana, C. V. Org. Lett. 2015, 17, 2870.
[5]
(g) Ghosh, A.; Mane, M. V.; Rode, H. B.; Patil, S. A.; Sridhar, B.; Dateer, R. B. Chem.-Asian. J. 2020, 15, 1.
[6]
For some examples with alkynes, see: (a) Lu, C.; Dubrovskiy, A. V.; Larock, R. C. J. Org. Chem. 2012, 77, 2279.
[6]
(b) Bhunia, S.; Chang, C. J.; Liu, R. S. Org. Lett. 2012, 14, 5522.
[6]
(c) Mckay, C. S.; Chigrinova, M.; Blake, J. A.; Peaccki, J. P. Org. Biomol. Chem. 2012, 10, 3066.
[6]
(d) Zhang, Y. Q.; Zhang, J. L. Chem. Commun. 2012, 48, 4710.
[6]
(e) Qi, Z. S.; Wang, M.; Li, X. W. Org. Lett. 2013, 15, 5440.
[6]
(f) Huehls, C. B.; Huang, J.; Yang, J. Tetrahedron 2015, 71, 3593.
[6]
(g) Huple, D. B.; Ghorpade, S.; Liu, R.-S. Adv. Synth. Catal. 2016, 358, 1348.
[6]
(i) Tangara, S.; Aupic, C.; Kanazawa, A.; Poisson, J.-F.; Py, S. Org. Lett. 2017, 19, 4842.
[6]
(h) Malig, T. C.; Yu, D.; Hein, J. E. J. Am. Chem. Soc. 2018, 140, 9167.
[6]
(i) Zhang, G.; Alshreimi, A. S.; Alonso, L.; Antar, A.; Yu, H.-C.; Islan, S. M.; Anderson, L. L. Angew. Chem., Int. Ed. 2021, 60, 13089.
[7]
(a) Malinina, J.; Tran, T. Q.; Stepakov, A. V.; Gurzhiy, V. V.; Starova, G. L.; Kostikov, R. R.; Molchanov, A. P. Tetrahedron Lett. 2014, 55, 3663.
[7]
(b) Anderson, L. L.; Kroc, M. A.; Reidl, T. W.; Son, J J. Org. Chem. 2016, 81, 9521.
[7]
(c) Lee, W.; Yuan, M.; Ashley, C.; Onwu, A.; Gutierrez, O. Org. Biomol. Chem. 2019, 17, 1767.
[8]
(a) Namitharan, K.; Pitchumani, K. Org. Lett. 2011, 13, 5278.
[8]
(b) Qin, C.; Davies, H. M. L. J. Am. Chem. Soc. 2013, 135, 14516.
[8]
(c) Wozniak, L.; Krajewska, O. S.; Michalak, M. Chem. Commun. 2015, 51, 1933.
[9]
(a) Bartoli, G.; Marcantoni, E.; Petrini, M. J. Org. Chem. 1990, 55, 4456.
[9]
(b) Denmark, S. E.; Montgomery, J. I. J. Org. Chem. 2006, 71, 6211.
[9]
(c) Yang, J. Synlett 2012, 23, 2293.
[10]
(a) Shi, W.-M.; Ma, X.-P.; Su, G.-F.; Mo, D.-L. Org. Chem. Front. 2016, 3, 116.
[10]
(b) Anderson, L. L. Asian J. Org. Chem. 2016, 5, 9.
[10]
(c) Merino, P.; Tejero, T.; Delso, I.; Matute, R. Org. Biomol. Chem. 2017, 15, 3364.
[10]
(d) Murahashi, S.-I.; Imada, Y. Chem. Rev. 2019, 119, 4684.
[10]
(e) Sukhorukov, A. Y. Adv. Synth. Catal. 2020, 362, 724.
[10]
(f) Thakur, S.; Das, A.; Das, T. New J. Chem. 2021, 45, 11420.
[10]
(g) Wang, L.; Zhang, Z.; Han, H.; Liu, X.; Bu, Z.; Wang, Q. Chin. J. Org. Chem. 2021, 41, 12. (in Chinese)
[10]
( 王乐乐, 张子莹, 韩华彬, 刘雄利, 卜站伟, 王琪琳, 有机化学, 2021, 41, 12.)
[11]
(a) Confalone, P. N.; Huie, E. M. Org. React. 1988, 36, 1.
[11]
(b) Soldaini, G.; Cardona, F.; Goti, A. Org. Lett. 2007, 9, 473.
[11]
(c) Gella, C.; Ferrer, E.; Alibes, R.; Busque, F.; de March, P.; Figueredo, M.; Font, J. J. Org. Chem. 2009, 74, 6365.
[11]
(d) Hota, S. K.; Chatterjee, A.; Bhattacharya, P. K.; Chattopadhyay, P. Green Chem. 2009, 11, 169.
[11]
(e) Forcato, M.; Mba, M.; Nugent, W. A.; Licini, G. Eur. J. Org. Chem. 2010, 740.
[11]
(f) Abrantes, M.; Goncalves, I. S.; Pillinger, M.; Vurchio, C.; Cordero, F. M.; Brandi, A. Tetrahedron Lett. 2011, 52, 7079.
[11]
(g) Zhang, Y. H.; Wu, M. Y.; Huang, W. C. RSC Adv. 2015, 5, 105825.
[12]
Hood, T. S.; Huehls, C. B.; Yang, J. Tetrahedron Lett. 2012, 53, 4679.
[13]
Ma, X.-P.; Shi, W.-M.; Mo, X.-L.; Li, X.-H.; Li, L.-G.; Pan, C.-X.; Chen, B.; Su, G.-F.; Mo, D.-L. J. Org. Chem. 2015, 80, 10098.
[14]
Fraboni, A. J.; Brenner-Moyer, S. E. Org. Lett. 2016, 18, 2146.
[15]
Li, Y.; Ng, J. S.; Wang, B.; Chiba, S. Org. Lett. 2021, 23, 5060.
[16]
(a) Ma, X.-P.; Liu, F.-P.; Mo, D.-L. Chin. J. Org. Chem. 2017, 37, 1069. (in Chinese)
[16]
( 马小盼, 刘凤萍, 莫冬亮, 有机化学, 2017, 37, 1069.)
[16]
(b) Chen, J.-Q.; Li, J.-H.; Dong, Z.-B. Adv. Synth. Catal. 2020, 362, 3311.
[17]
(a) Mo, D.-L.; Wink, D. A.; Anderson, L. L. Org. Lett. 2012, 14, 5180.
[17]
(b) Chen, C.-H.; Liu, Q.-Q.; Ma, X.-P.; Feng, Y.; Liang, C.; Pan, C.-X.; Su, G.-F.; Mo, D.-L. J. Org. Chem. 2017, 82, 6417.
[17]
(c) Mo, X.-L.; Chen, C.-H.; Liang, C.; Mo, D.-L. Eur. J. Org. Chem. 2018, 2018, 150.
[18]
Kontokosta, D.; Mueller, D. S.; Mo, D.-L.; Pace, W. H.; Simpson, R. A.; Anderson, L. L. Beilstein J. Org. Chem. 2015, 11, 2097.
[19]
Nakamura, I.; Onuma, T.; Kanazawa, R.; Nishigai, Y.; Terada, M. Org. Lett. 2014, 16, 4198.
[20]
Li, X.; Yan, W.; Zhang, R.; Chang, H.; Gao, W.; Tian, X.; Wei, W. Synthesis 2019, 51, 4043.
[21]
Nakamura, I.; Okamoto, M.; Sato, Y.; Terada, M. Angew. Chem., Int. Ed. 2012, 51, 10816.
[22]
Nakamura, I.; Sato, Y.; Takeda, K.; Terada, M. Chem.-Eur. J. 2014, 20, 10214.
[23]
Chen, F.; Yang, X.-L.; Wu, Z.-W.; Han, B. J. Org. Chem. 2016, 81, 3042.
[24]
Huehls, C. B.; Hood, T. S.; Yang, J. Angew. Chem., Int. Ed. 2012, 51, 5110.
[25]
Mo, D.-L.; Wink, D. J.; Anderson, L. L. Chem.-Eur. J. 2014, 20, 13217.
[26]
Huehls, C. B.; Huang, J.; Yang, J. Tetrahedron 2015, 71, 3593.
[27]
Pace, W. H.; Mo, D.-L.; Reidl, T. W.; Wink, D. J.; Anderson, L. L. Angew. Chem., Int. Ed. 2016, 55, 9183.
[28]
Ma, X.-P.; Li, K.; Wu, S.-Y.; Liang, C.; Su, G.-F.; Mo, D.-L. Green. Chem. 2017, 19, 5761.
[29]
Kroc, M. A.; Prajapati, A.; Wink, D. J.; Anderson, L. L. J. Org. Chem. 2018, 83, 1085.
[30]
Xu, P.-P.; Liao, J.-Y.; Zhang, J.-J.; Shi, W.-M.; Liang, C.; Su, G.-F.; Mo, D.-L. Org. Lett. 2021, 23, 7482.
[31]
Ghosh, A.; Mane, M. V.; Rode, H. B.; Patil, S. A.; Sridhar, B.; Dateer, R. B. Chem.-Asian. J. 2020, 15, 899.
[32]
Zhao, J.; Huang, B.-Q.; Zhu, B.-C.; Ma, X.-P.; Mo, D.-L. Adv. Synth. Catal. 2021, 363, 4575.
[33]
Mo, D.-L.; Anderson, L. L. Angew. Chem., Int. Ed. 2013, 52, 6722.
[34]
Mo, D.-L.; Pecak, W. H.; Zhao, M.; Wink, D. J.; Anderson, L. L. Org. Lett. 2014, 16, 3696.
[35]
Kumar, Y.; Singh, P.; Bhargave, G. New J. Chem. 2016, 40, 8216.
[36]
Kroc, M. A.; Markiewicz, M.; Pace, W. H.; Wink, D. J.; Anderson, L. L. Chem. Commun. 2019, 55, 2309.
[37]
Zou, N.; Jiao, J.-W.; Feng, Y.; Chen, C.-H.; Liang, C.; Su, G.-F.; Mo, D.-L. Adv. Synth. Catal. 2017, 359, 3545.
[38]
Ma, X.-P.; Li, L.-G.; Zhao, H.-P.; Du, M.; Liang, C.; Mo, D.-L. Org. Lett. 2018, 20, 4571.
[39]
Ma, X.-P.; Nong, C.-M.; Zhao, J.; Lu, X.; Liang, C.; Mo, D.-L. Adv. Synth. Catal. 2020, 6, 478.
[40]
Ma, X.-P.; Nong, C.-M.; Liang, Y.-F.; Xu, P.-P.; Guo, X.-Y.; Liang, C.; Pan, C.-X.; Su, G.-F.; Mo, D.-L. Green Chem. 2020, 22, 3827.
[41]
Chen, C.-H.; Wu, Q.-Y.; Wei, C.; Liang, C.; Su, G.-F.; Mo, D.-L. Green Chem. 2018, 20, 2722.
[42]
Liao, J.-Y.; Wu, Q.-Y.; Lu, X.; Zou, N.; Pan, C.-X.; Liang, C.; Su, G.-F.; Mo, D.-L. Green Chem. 2019, 21, 6567.
[43]
Zou, N.; Lan, J.-X.; Yan, G.-G.; Liang, C.; Su, G.-F.; Mo, D.-L. Org. Lett. 2020, 22, 8446.
[44]
Zou, N.; Jiao, J.-W.; Feng, Y.; Pan, C.-X.; Liang, C.; Su, G.-F.; Mo, D.-L. Org. Lett. 2019, 21, 481.
[45]
Jia, Q.; Li, D.; Lang, M.; Zhang, K.; Wang, J. Adv. Synth. Catal. 2017, 359, 3837.
[46]
Hasegawa, M.; Suga, T.; Soeta, T.; Ukaji, Y. J. Org. Chem. 2020, 85, 11258.
[47]
Buchlovic, M.; Hebanova, S.; Potacek, M. Tetrahedron 2012, 68, 3117.
Outlines

/