Chinese Journal of Organic Chemistry >
Visible Light-Induced Aerobic Oxidative Dehydrogenative Coupling of Thiophenols
Received date: 2021-11-25
Revised date: 2021-12-11
Online published: 2021-12-15
Supported by
National Natural Science Foundation of China(22071211); Natural Science Foundation of Hunan Province(2020JJ3032)
α-Thioetherified carbonyl compounds widely exist in nature and various industries. They are important intermediates for the synthesis of heterocycles. The traditional synthesis methods of carbonyl thioethers usually need the pre- functionalization of substrates to convert them from nucleophiles to electrophiles. The synthesis methods are cumbersome and complex. Therefore, it is very important to explore a new thioetherification reaction of carbonyl compounds. The synthesis of thioether compounds by oxidative dehydrogenation coupling reaction of ketones and thiophenols under visible light was developed. In the photocatalytic system, without any metal, the reaction successfully realizes high atomic economy and wide substrate application range using cheap and easily available air as oxidant, and provides a simpler method for the direct construction of C—S bond.
Key words: photocatalysis; C—S bond construction; dehydrogenation coupling; thioether
Xing Chen , Xuan Zhou , Xiaochen Ji , Huawen Huang . Visible Light-Induced Aerobic Oxidative Dehydrogenative Coupling of Thiophenols[J]. Chinese Journal of Organic Chemistry, 2021 , 41(12) : 4704 -4711 . DOI: 10.6023/cjoc202111037
[1] | (a) Dondoni, A. Angew. Chem., Int. Ed. 2008, 47, 8995. |
[1] | (b) Boyd, D. A. Angew. Chem., Int. Ed. 2016, 55, 15486. |
[1] | (c) Pathak, A. K.; Pathak, V.; Seitz, L. E.; Suling, W. J.; Reynolds, R. C. J. Med. Chem. 2004, 47, 273. |
[1] | (d) Chivers, T.; Elder, P. J. Chem. Soc. Rev. 2013, 42, 5996. |
[1] | (e) Liu, H.; Jiang, X. Chem.-Asian. J. 2013, 8, 2546. |
[1] | (f) Yu, Y.; Duan, W.; Lin, G.; Kang, G.; Wang, X.; Lei, F. Chin. J. Org. Chem. 2020, 40, 1647. (in Chinese) |
[1] | ( 虞友培, 段文贵, 林桂汕, 康国强, 王晓宇, 雷福厚, 有机化学, 2020, 40, 1647.) |
[1] | (g) He, M.; He, C.; Liu, L.; Ye, J.; Hu, A.; Chen, Y.; Xu, L.; Liu, A. Chin. J. Org. Chem. 2020, 40, 2402. (in Chinese) |
[1] | ( 何梅, 贺超凡, 刘玲, 叶姣, 胡艾希, 陈云, 许律捷, 刘艾林, 有机化学, 2020, 40, 2402.) |
[1] | (h) Yan, X.; Li, C.; Jin, Z.; Xu, X.; Chen, W.; Pan, Y. Chin. J. Org. Chem. 2020, 40, 3837. (in Chinese) |
[1] | ( 闫晓静, 李畅, 靳智雄, 徐孝菲, 陈维伟, 潘远江, 有机化学, 2020, 40, 3837.) |
[2] | (a) Chivers, T.; Elder, P. J. W. Chem. Soc. Rev. 2013, 42, 5996. |
[2] | (b) Liu, B.; Lim, C. H.; Miyake, G. M. J. Am. Chem. Soc. 2017, 139, 13616. |
[2] | (c) Zhang, Y. G.; Ngeow, K. C.; Ying, J. J. Org. Lett. 2007, 9, 3495. |
[2] | (d) Wong, Y. C.; Jayanth, T. T.; Cheng, C. H. Org. Lett. 2006, 8, 5613. |
[2] | (e) Yan, M.; Kawamata, Y.; Baran, P. S. Angew. Chem., Int. Ed. 2018, 57, 4149. |
[2] | (f) Mohle, S.; Zirbes, M.; Rodrigo, E.; Gieshoff, T.; Wiebe, A.; Waldvogel, S. R. Angew. Chem., Int. Ed. 2018, 57, 6018. |
[2] | (g) Cheng, L.; Ge, X.; Liu, X.; Feng, Y. Chin. J. Org. Chem. 2020, 40, 2008. (in Chinese) |
[2] | ( 成琳, 葛新, 刘学民, 冯云辉, 有机化学, 2020, 40, 2008.) |
[3] | (a) Shibatomi, K.; Narayama, A.; Soga, Y.; Muto, T.; Iwasa, S. Org. Lett. 2011, 13, 2944. |
[3] | (b) Ranu, B. C.; Mandal, T. J. Org. Chem. 2004, 69, 5793. |
[4] | (a) Zhang, X.Y.; Guo, S. R. J. Sulfur Chem. 2011, 32, 23. |
[4] | (b) Sindhu, K. S.; Thankachan, A. P.; Thomas, A. M.; Anilkumar, G. Tetrahedron Lett. 2016, 3, 556. |
[4] | (c) Oderinde, M. S.; Frenette, M. D.; Robbins, W.; Aquila, B.; Johannes, J. W. J. Am. Chem. Soc. 2016, 138, 1760. |
[5] | Brindaban, C.; Ranu; Mandal, T. J. Org. Chem. 2004, 69, 5793. |
[6] | (a) Yan, M.; Kawamata, Y.; Baran, P. S. Angew. Chem., Int. Ed. 2018, 57, 4149. |
[6] | (b) Waldvogel, S. R.; Lips, S.; Selt, M.; Riehl, B.; Kampf, C. J. Chem. Rev. 2018, 118, 6706. |
[6] | (c) Mohle, S.; Zirbes, M.; Rodrigo, E.; Gieshoff, T.; Wiebe, A.; Waldvogel, S. R. Angew. Chem., Int. Ed. 2018, 57, 6018. |
[6] | (d) Zheng, L.; Tao, K.; Guo, W. Adv. Synth. Catal. 2021, 363, 62. |
[6] | (e) Li, G.; Yan, Q.; Gong, X.; Dou, X.; Yang, D. ACS Sustainable Chem. Eng. 2019, 7, 14009. |
[6] | (f) Peng, S.; He, W. M.; Lin, Y. W. Chin. J. Org. Chem. 2020, 40, 541. (in Chinese) |
[6] | ( 彭莎, 何为民, 林英武, 有机化学, 2020, 40, 541.) |
[6] | (g) Chen, N.; Liu, B.; Liu, Y. J.; Lei, J.; Sun, K. Adv. Synth. Catal. 2020, 362, 3709 |
[6] | (h) Wang, X.; Zhang, Y.; Sun, K.; Meng, J.; Zhang, B. Chin. J. Org. Chem. 2021, 41, 4588. (in Chinese) |
[6] | ( 王薪, 张艳, 孙凯, 孟建萍, 张冰, 有机化学, 2021, 41, 4588.) |
[6] | (i) Wu, Y.; Chen, J.-Y.; Ning, J.; Jiang, X.; Deng, J.; Deng, Y.; Xu, R.; He, W.-M. Green Chem. 2021, 23, 3950. |
[6] | (j) Jiang, J.; Xiao, F.; He, W.-M.; Wang, L. Chin. Chem. Lett. 2021, 32, 1637. |
[6] | (k) Jiang, J.; Wang, Z.; He, W.-M. Chin. Chem. Lett. 2021, 32, 1591. |
[6] | (l) Mamat, M.; Liu, C.; Abdukerem, D.; Abdukader, A. Org. Biomol. Chem. 2021, 19, 9855. |
[6] | (m) Wang, C.; Shi, H.; Deng, G.-J.; Huang, H. Org. Biomol. Chem. 2021, 19, 9177. |
[7] | (a) Girard, S. A.; Knauber, T.; Li, C.-J. Angew. Chem., Int. Ed. 2014, 53, 74. |
[7] | (b) Siddaraju, Y.; Prabhu, K. R. J. Org. Chem. 2016, 81, 7838. |
[7] | (c) Siddaraju, Y.; Prabhu, K. R. Org. Lett. 2016, 18, 6090. |
[8] | Wang, P.; Tang, S.; Huang, P.; Lei, A. Angew. Chem., Int. Ed. 2017, 56, 3009. |
[9] | Guo, W.; Tan, W.; Zhao, M.; Tao, K.; Zheng, L. Y.; Wu, Y.; Chen, D.; Fan, X. L. RSC Adv. 2017, 7, 37739. |
[10] | Varun, B. V.; Gadde, K.; Prabhu, K. R. Org. Lett. 2015, 17, 2944. |
[11] | (a) Siddaraju, Y.; Prabhu, K. R. Org. Biomol. Chem. 2017, 15, 5191. |
[11] | (b) Song, S.; Sun, X.; Li, X.; Yuan, Y.; Jiao, N. Org. Lett. 2015, 17, 2886. |
[11] | (c) Rafique, J.; Saba, S.; Rosário, A. R; Braga, A. L. Chem.-Eur. J. 2016, 22, 11854. |
[11] | (d) Siddaraju, Y.; Prabhu, K. R. J. Org. Chem. 2017, 82, 3084. |
[12] | Cao, H.; Yuan, J.; Liu, C.; Hu, X.; Lei, A. RSC Adv. 2015, 5, 41493. |
[13] | (a) Li, Y.; Liu, D.; Liu, C.; Lei, A. Chem.-Asian J. 2016, 11, 2246. |
[13] | (b) Sumino, S.; Fusano, A.; Fukuyama, T.; Ryu, I. Acc Chem. Res. 2014, 47, 1563. |
[13] | (c) Nguyen, J. D.; D’Amato, E. M.; Narayanam, J. M.; Stephenson, C. R. Nat. Chem. 2012, 4, 854. |
[14] | (a) Zhu, X.; Xie, X.; Li, P.; Guo, J.; Wang, L. Org. Lett. 2016, 18, 1546. |
[14] | (b) Tan, H.; Li, H. J.; Ji, W.; Wang, L. Angew. Chem., Int. Ed. 2015, 54, 8374. |
[14] | (c) Yang, W.; Yang, S.; Li, P.; Wang, L. Chem. Commun. 2015, 51, 7520. |
[14] | (d) Xia, D.; Miao, T.; Li, P.; Wang, L. Chem.-Asian J. 2015, 10, 1919. |
[15] | Chen, Q.; Wang, X. F.; Wen, C. X.; Huang, Y. L.; Yan, X. X.; Zeng, J. K. RSC Adv. 2017, 7, 39758. |
[16] | Tan, J.; Liang, F. S.; Wang, Y. M.; Cheng, X.; Liu, Q.; Yuan, H. Org. Lett. 2008, 10, 2485. |
[17] | Sun, J.; Qiu, J. K.; Zhu, Y. L.; Guo, C.; Hao, W. J.; Jiang, B.; Tu, S. J. J. Org. Chem. 2015, 80, 8217. |
/
〈 |
|
〉 |