ARTICLES

Visible Light-Mediated Metal-Free Decarboxylative Deuteration of Carboxylic Acid

  • Yuhang He ,
  • Hui Yang ,
  • Dongxu Gao ,
  • Jiahui Ma ,
  • Yamin Shao ,
  • Guanghui An ,
  • Guangming Li
Expand
  • Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080
* Corresponding authors. E-mail: ;

Received date: 2021-11-06

  Revised date: 2021-12-11

  Online published: 2021-12-15

Supported by

National Natural Science Foundation of China(21502046)

Abstract

A metal-free visible light-induced decarboxylation of phenylacetic acid derivatives has been successfully developed. Without the additives, direct decarboxylative monodeuteration of acids was successfully achieved using cheap deuterium sources. Besides, in presence of air, similar catalytic systems provided ketone products.

Cite this article

Yuhang He , Hui Yang , Dongxu Gao , Jiahui Ma , Yamin Shao , Guanghui An , Guangming Li . Visible Light-Mediated Metal-Free Decarboxylative Deuteration of Carboxylic Acid[J]. Chinese Journal of Organic Chemistry, 2021 , 41(12) : 4725 -4731 . DOI: 10.6023/cjoc202111014

References

[1]
(a) Loh, Y. Y.; Nagao, K.; Hoover, A. J.; Hesk, D.; Rivera, N. R.; Colletti, S. L.; Davies, I. W.; MacMillan, D. W. C. Science 2017, 358, 1182.
[1]
(b) Atzrodt, J.; Derdau, V.; Kerr, W. J.; Reid, M. Angew. Chem., nt. Ed. 2018, 57, 1758.
[2]
(a) Zhang, P.-P.; Huang, D.; Newhouse, T. R. J. Am. Chem. Soc. 2020, 142, 1757.
[2]
(b) Sterckx, H.; De Houwer, J.; Mensch, C.; Herrebout, W.; Tehrani, K. A.; Maes, B. U. W. Beilstein J. Org. Chem. 2016, 12, 144.
[2]
(c) Liu, J.-Z.; Wen, X.-J.; Qin, C.; Li, X.-Y.; Luo, X.; Sun, A.; Zhu, B.-C.; Song, S.; Jiao, N. Angew. Chem., nt. Ed. 2017, 56, 11940.
[3]
(a) Atzrodt, J.; Derdau, V.; Kerr, W. J.; Reid, M. Angew. Chem., nt. Ed. 2018, 57, 3022.
[3]
(b) Atzrodt, J.; Derdau, V.; Fey, T.; Zimmermann, J. Angew. Chem., nt. Ed. 2007, 46, 7744.
[3]
(c) Bai, W.; Lee, K.-H.; Tse, S. K. S.; Chan, K. W.; Lin, Z.-Y.; Jia, G.-C. Organometallics 2015, 34, 3686.
[3]
(d) Tse, S. K. S.; Xue, P.; Lau, C. W. S.; Sung, H. H. Y.; Williams, I. D.; Jia, G.-C. Chem.-Eur. J. 2011, 17, 13918.
[3]
(e) Neubert, L.; Michalik, D.; Bähn, S.; Imm, S.; Neumann, H.; Atzrodt, J.; Derdau, V.; Holla, W.; Beller, M. J. Am. Chem. Soc. 2012, 134, 12239.
[3]
(f) Hale, L. V. A.; Szymczak, N. K. J. Am. Chem. Soc. 2016, 138, 13489.
[4]
Modvig, A.; Andersen, T. L.; Taaning, R. H.; Lindhardt, A. T.; Skrydstrup, T. J. Org. Chem. 2014, 79, 5861.
[5]
(a) Cook, A.; Prakash, S.; Zheng, Y.-L.; Newman, S. G. J. Am. Chem. Soc. 2020, 142, 8109.
[5]
(b) Eisele, P.; Ullwer, F.; Scholz, S.; Plietker, B. Chem.-Eur. J. 2019, 25, 16550.
[5]
(c) Li, H.-Z.; Hou, Y.-X.; Liu, C.-W.; Lai, Z.-M.; Ning, L.; Szostak, R.; Szostak, M.; An, J. Org. Lett. 2020, 22, 1249.
[5]
(d) Zhu, N.-B.; Su, M.; Wan, W.-M.; Li, Y.-J.; Bao, H.-L. Org. Lett. 2020, 22, 991.
[5]
(e) Ding, Y.-X.; Luo, S.-H.; Weng, C.-Q.; An, J. J. Org. Chem. 2019, 84, 15098.
[5]
(f) Li, H.-Z.; Zhang, B.; Dong, Y.-H.; Liu, T.; Zhang, Y.-T.; Nie, H.-Y.; Yang, R.-Y.; Ma, X.-D.; Ling, Y.; An, J. Tetrahedron Lett. 2017, 58, 2757.
[6]
(a) Gallezot, P. Chem. Soc. Rev. 2012, 41, 1538.
[6]
(b) Rodríguez, N.; Goossen, L. J. Chem. Soc. Rev. 2011, 40, 5030.
[6]
(c) Xie, L.-Y.; Bai, Y.-S.; Xu, X.-Q.; Peng, X.; Tang, H.-S.; Huang, Y.; Lin, Y.-W.; Cao, Z.; He, W.-M. Green Chem. 2020, 22, 1720.
[6]
(d) Xie, L.-Y.; Peng, S.; Yang, L.-H.; Peng, C.; Lin, Y.-W.; Yu, X.; Cao, Z.; Peng, Y.-Y.; He, W.-M. Green Chem. 2021, 23, 374.
[6]
(e) Zhao, F.; Guo, S.; Zhang, Y.; Sun, T.; Yang, B.; Ye, Y.; Sun, K. Org. Chem. Front. 2021, DOI: 10.1039/d1qo01425k.
[6]
(f) Wang, X.; Li, G.-F.; Sun, K.; Zhang, B. Chin. J. Org. Chem. 2020, 40, 913. (in Chinese)
[6]
( 王薪, 李国锋, 孙凯, 张冰, 有机化学, 2020, 40, 913.)
[6]
(g) Sun, K.; Li, G.-F.; Li, Y.-Y.; Yu, J.; Zhao, Q.; Zhang, Z.-G.; Zhang, G.-S. Adv. Synth. Catal. 2020, 362, 1947.
[6]
(h) Bi, M.-X.; Qian, P.; Wang, Y.-K.; Zha, Z.-G.; Wang, Z.-Y. Chin. Chem. Lett. 2017, 28, 1159.
[7]
(a) Liu, C.-B.; Chen, Z.-X.; Su, C.-L.; Zhao, X.-X.; Gao, Q.; Ning, G.-H.; Zhu, H.; Tang, W.; Leng, K.; Fu, W.; Tian, B.-B.; Peng, X.-W.; Li, J.; Xu, Q.-H.; Zhou, W.; Loh, K. P. Nat. Commun. 2018, 9, 80.
[7]
(b) Liu, C.-B.; Han, S.-Y.; Li, M.-Y.; Chong, X.-D.; Zhang, B. Angew. Chem., nt. Ed. 2020, 59, 18527.
[7]
(c) Dong, Y.-Y.; Su, Y.-L.; Du, L.-L.; Wang, R.-F.; Zhang, L.; Zhao, D.-B.; Xie, W. ACS Nano 2019, 13, 10754.
[8]
Matsubara, S.; Yokota, Y.; Oshima, K. Org. Lett. 2004, 6, 2071.
[9]
Rudzki, M.; Alcalde-Aragonés, A.; Dzik, W. I.; Rodríguez, N.; Gooßen, L. J. Synthesis 2012, 44, 184.
[10]
(a) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102.
[10]
(b) Xuan, J.; Xiao, W.-J. Angew. Chem., nt. Ed. 2012, 51, 6828.
[10]
(c) He, W.-M.; Cui, X.-L. Chin. Chem. Lett. 2021, 32, 1589.
[10]
(d) Zhao, Q.-Q.; Chen, J.-R. Chin. J. Org. Chem. 2021, 41, 871. (in Chinese)
[10]
( 赵全庆, 陈加荣, 有机化学, 2021, 41, 871.)
[10]
(e) Liu, X.; Li, W.; Zhuang, C.-Z.; Cao, H. Chin. J. Org. Chem. 2021, 41, 3459. (in Chinese)
[10]
( 刘想, 李文, 庄灿展, 曹华, 有机化学, 2021, 41, 3459.)
[10]
(f) Wang, X.; Zhang, Y.; Sun, K.; Meng, J.-P.; Zhang, B. Chin. J. Org. Chem. 2021, 41, 4588. (in Chinese)
[10]
( 王薪, 张艳, 孙凯, 孟建萍, 张冰, 有机化学, 2021, 41, 4588.)
[10]
(g) Wang, S.-W.; Yu, J.; Zhou, Q.-Y.; Chen, S.-Y.; Xu, Z.-H.; Tang, S. ACS Sustainable Chem. Eng. 2019, 7, 10154.
[10]
(h) Yang, H.-Q.; Chen, Q.-Q.; Liu, F.-L.; Shi, R.; Chen, Y. Chin. Chem. Lett. 2021, 32, 676.
[10]
(i) Kong, Y.-L.; Xu, W.-X.; Liu, X.-H.; Weng, J.-Q. Chin. Chem. Lett. 2020, 31, 3245.
[10]
(j) Xie, L.-Y.; Liu, Y.-S.; Ding, H.-R.; Gong, S.-F.; Tan, J.-X.; He, J.-Y.; Cao, Z.; He, W.-M. Chin. J. Catal. 2020, 41, 1168.
[10]
(k) Meng, X.-X.; Kang, Q.-Q.; Zhang, J.-Y.; Li, Q.; Wei, W.-T.; He, W.-M.. Green Chem. 2020, 22, 1388.
[10]
(l) Gui, Q.-W.; Teng, F.; Li, Z.-C.; Xiong, Z.-Y.; Jin, X.-F.; Liu, H.-Y.; Lin, Y.-W.; Cao, Z.; He, W.-M. Chin. Chem. Lett. 2021, 32, 1907.
[11]
Patra, T.; Mukherjee, S.; Ma, J.; Strieth-Kalthoff, F.; Glorius, F. Angew. Chem., nt. Ed. 2019, 58, 10514.
[12]
(a) Li, N.; Ning, Y.-Y.; Wu, X.-P.; Xie, J.; Li, W.-P.; Zhu, C.-J. Chem. Sci. 2021, 12, 5505.
[12]
(b) Itou, T.; Yoshimi, Y.; Nishikawa, K.; Morita, T.; Okada, Y.; Ichinose, N.; Hatanaka, M. Chem. Commun. 2010, 46, 6177.
[13]
Shi, J.-L.; Yuan, T.; Zheng, M.-F.; Wang, X.-C. ACS Catal. 2021, 11, 3040.
[14]
(a) Huang, H.; Yu, C.-G.; Zhang, Y.-T.; Zhang, Y.-Q.; Mariano, P. S.; Wang, W. J. Am. Chem. Soc. 2017, 139, 9799.
[14]
(b) Tian, H.-T.; Yang, H.; Tian, C.; An, G.-H.; Li, G.-M. Org. Lett. 2020, 22, 7709.
[14]
(c) Zhao, B.; Shang, R.; Cheng, W.-M.; Fu, Y. Org. Chem. Front. 2018, 5, 1782.
[14]
(d) Luo, J.; Zhang, J. ACS Catal. 2016, 6, 873.
[14]
(e) Yang, H.; Tian, C.; Qiu, D.-S.; Tian, H.-T.; An, G.-H.; Li, G.-M. Org. Chem. Front. 2019, 6, 2365.
[14]
(f) Shang, T.-Y.; Lu, L.-H.; Cao, Z.; Liu, Y.; He, W.-M.; Yu, B. Chem. Commun. 2019, 55, 5408.
[14]
(g) Huang, H.; Li, X.-M.; Yu, C.-G.; Zhang, Y.-T.; Mariano, P. S.; Wang, W. Angew. Chem., nt. Ed. 2017, 56, 1500.
[14]
(h) Yi, R.-N.; He, W.-M. Chin. J. Org. Chem. 2021, 41, 1267. (in Chinese)
[14]
( 易荣楠, 何卫民, 有机化学, 2021, 41, 1267.)
[15]
(a) Shirase, S.; Tamaki, S.; Shinohara, K.; Hirosawa, K.; Tsurugi, H.; Satoh, T.; Mashima, K. J. Am. Chem. Soc. 2020, 142, 5668.
[15]
(b) Bazyar, Z.; Hosseini-Sarvari, M. J. Org. Chem. 2019, 84, 13503.
Outlines

/