Chinese Journal of Organic Chemistry >
Asymmetric Synthesis of (–)-Colchicine and Its Natural Analog (–)-N-Acetylcolchicine Methyl Ether
Received date: 2022-06-20
Revised date: 2022-07-26
Online published: 2022-09-02
Supported by
Shenzhen Science and Technology Innovation Commission(JSGG20210901145539016); Shenzhen Science and Technology Innovation Commission(JCYJ20190812171005713); Shenzhen Science and Technology Innovation Commission(JCYJ20210324121611032); Shenzhen Baoan Chinese Medicine Development Foundation(2020KJCX-KTYJ-215); Shenzhen Excellent Scientific and Technological Innovation Talents Training Project-PhD Initiation Program(RCBS20210706092212002); Guangdong Basic and Applied Basic Research Foundation(2020A1515011427); Guangdong Basic and Applied Basic Research Foundation(2022A1515011777)
(–)-Colchicine and its natural analogue (–)-N-acetylcolchinol methyl ether have been synthesized in a com- paratively conciser asymmetric synthetic approach. Firstly, the carbon framework was constructed by Aldol condensation of simple aldehydes and ketones, and then the chiral amine intermediates were synthesized economically and efficiently through asymmetric reductive amination with chiral tert-butanesulfinamide. The 3-rings skeleton of colchicine and related alkaloids was then constructed by oxidation with hypervalent iodine reagent. Our strategy provides an efficient method for the convenient and economical synthesis of these alkaloids.
Liu-Yang Pu , Zhiyue Li , Limin Li , Yucui Ma , Min Ma , Shengquan Hu , Zhengzhi Wu . Asymmetric Synthesis of (–)-Colchicine and Its Natural Analog (–)-N-Acetylcolchicine Methyl Ether[J]. Chinese Journal of Organic Chemistry, 2023 , 43(1) : 313 -319 . DOI: 10.6023/cjoc202206034
| [1] | Nerlekar, N.; Beale, A.; Harper, R. W. Med. J. Australia 2014, 201, 687. |
| [2] | (a) Lu, Y.; Chen, J.; Xiao, M.; Li, W.; Miller, D. D. Pharm. Res. 2012, 29, 2943. |
| [2] | (b) Richter, M.; Boldescu, V.; Graf, D. K.; Streicher, F.; Dimoglo, A.; Bartenschlager, R.; Klein, C. D. ChemMedChem 2019, 14, 469. |
| [2] | (c) Spartalis, M.; Tzima, I.; Anastasiou, A.; Spartalis, E.; Iliopoulos, D. C.; Siasos, G. Curr. Med. Chem. 2022, 29, 4477. |
| [3] | (a) Narasaraju, T.; Tang, B. M.; Herrmann, M.; Muller, S.; Chow, V. T. K.; Radic, M. Front Pharmacol. 2020, 11, 870. |
| [3] | (b) Karampoor, S.; Hesamizadeh, K.; Maleki, F.; Farahmand, M.; Zahednasab, H.; Mirzaei, R.; Banoun, H.; Zamani, F.; Hajibaba, M.; Tabibzadeh, A.; Bouzari, B.; Bastani, M. N.; Laali, A.; Keyvani, H. Int. Immunopharmacol. 2021, 100, 108137. |
| [4] | The Lancet Lancet 2022, 399, 1753. |
| [5] | (a) Jackson, C. B.; Farzan, M.; Chen, B.; Choe, H. Nat. Rev. Mol. Cell Biol. 2022, 23, 3. |
| [5] | (b) Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Kruger, N.; Herrler, T.; Erichsen, S.; Schiergens, T. S.; Herrler, G.; Wu, N. H.; Nitsche, A.; Muller, M. A.; Drosten, C.; Pohlmann, S. Cell 2020, 181, 271. |
| [6] | Lopes, M. I.; Bonjorno, L. P.; Giannini, M. C.; Amaral, N. B.; Menezes, P. I.; Dib, S. M.; Gigante, S. L.; Benatti, M. N.; Rezek, U. C.; Emrich-Filho, L. L.; Sousa, B. A. A.; Almeida, S. C. L.; Luppino Assad, R.; Veras, F. P.; Schneider, A.; Rodrigues, T. S.; Leiria, L. O. S.; Cunha, L. D.; Alves-Filho, J. C.; Cunha, T. M.; Arruda, E.; Miranda, C. H.; Pazin-Filho, A.; Auxiliadora-Martins, M.; Borges, M. C.; Fonseca, B. A. L.; Bollela, V. R.; Del-Ben, C. M.; Cunha, F. Q.; Zamboni, D. S.; Santana, R. C.; Vilar, F. C.; Louzada-Junior, P.; Oliveira, R. D. R. RMD Open 2021, 7, e001455. |
| [7] | For reviews, see: |
| [7] | (a) Gracheva, I. A.; Shchegravina, E. S.; Schmalz, H. G.; Beletskaya, I. P.; Fedorov, A. Y. J. Med. Chem. 2020, 63, 10618. |
| [7] | (b) Ghawanmeh, A. A.; Al-Bajalan, H. M.; Mackeen, M. M.; Alali, F. Q.; Chong, K. F. Eur. J. Med. Chem. 2020, 185, 111788. |
| [8] | For synthesis of colcicine before 2004, see: Graening, T.; Schmalz, H.-G. Angew. Chem., Int. Ed. 2004, 43, 3230 and references therein. |
| [9] | (a) Graening, T.; Bette, V.; Neudorfl, J.; Lex, J.; Schmalz, H.-G. Org. Lett. 2005, 7, 4317. |
| [9] | (b) Chen, B.; Liu, X.; Hu, Y.-J.; Zhang, D.-M.; Deng, L.; Lu, J.; Min, L.; Ye, W.-C.; Li, C.-C. Chem. Sci. 2017, 8, 4961. |
| [9] | (c) Liu, X.; Hu, Y.-J.; Chen, B.; Min, L.; Peng, X.-S.; Zhao, J.; Li, S.; Wong, H. N. C.; Li, C.-C. Org. Lett. 2017, 19, 4612. |
| [9] | (d) Hoffmann, R. W.; Schmalz, H.-G.; Koert, U.; Pierens, G. K. Chem. Sci. 2019, 10, 943. |
| [9] | (e) Liang, X.; Li, L.; Wei, K.; Yang, Y.-R. Org. Lett. 2021, 23, 2731. |
| [10] | Banwell, M. G. Pure Appl. Chem. 1996, 68, 539. |
| [11] | Li, Y.; Ma, Z.; Xu, X. Chin. J. Org. Chem. 2020, 40, 3991. (in Chinese) |
| [11] | (李颖, 马志强, 徐学涛, 有机化学, 2020, 40, 3991.) |
| [12] | (a) Colyer, J. T.; Andersen, N. G.; Tedrow, J. S.; Soukup, T. S.; Faul, M. M. J. Org. Chem. 2006, 71, 6859. |
| [12] | (b) Tanuwidjaja, J.; Peltier, H. M.; Ellman, J. A. J. Org. Chem. 2007, 72, 626. |
| [13] | Kang, G. J.; Getahun, Z.; Muzaffar, A.; Brossi, A.; Hamel, E. J. Biol. Chem. 1990, 265, 10255. |
| [14] | Zarga, M. H. A.; Sabri, S. S.; Al-Tel, T. H.; Rahman, A.; Shah, Z.; Feroz, M. J. Nat. Prod. 1991, 54, 936. |
| [15] | (a) Davies, S. G.; Fletcher, A. M.; Roberts, P. M.; Thomson, J. E.; Yeung, A. J. Nat. Prod. 2019, 82, 2659. |
| [15] | (b) Davies, S. G.; Fletcher, A. M.; Roberts, P. M.; Thomson, J. E.; Yeung, A. Tetrahedron 2019, 75, 130694. |
| [16] | For selected papers, see: |
| [16] | (a) Seganish, W. M.; DeShong, P. Org. Lett. 2006, 8, 3951. |
| [16] | (b) Vorogushin, A. V.; Wulff, W. D.; Hansen, H. J. Tetrahedron 2008, 64, 949. |
/
| 〈 |
|
〉 |