ARTICLES

Synthesis and Characterization of New Indeno[1,2-b]fluorene-6,12-dione Derivatives

  • Jing Wang ,
  • Linlin Wu ,
  • Qian Wang
Expand
  • Department of Chemistry Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000
* Corresponding author. E-mail:

Received date: 2022-06-21

  Revised date: 2022-07-26

  Online published: 2022-09-02

Supported by

National Natural Science Foundation of China(21302120)

Abstract

Indeno fluorene-6,12-dione derivatives 5 modified by different alkyl substitutions were designed and synthesized from 2,5-dibromo-p-xylene and phenylboronic acid derivatives through oxidation, esterification, Suzuki coupling, saponi- fication and cyclization reactions. Alkyl chains of different lengths were introduced into molecules to improve the solubility of the compounds and investigate the effects of systematic substitution variation on their properties. It was found that the solubility, thermal and optical stability of the new compounds were better than those of pentacene. Compounds 5 have increased electronegativities because of the low lowest unoccupied molecular orbital (LUMO) energies (≤–3.4 eV). 2,8- Diisopropylindeno[1,2-b]fluorene-6,12-dione (5b) and 2,8-dibutylindeno[1,2-b]fluorene-6,12-dione (5c) have rigid molecular frameworks and pack into slipped face-to-face π-stacks, the layer spacings are 0.3457 and 0.3423 nm, respectively. The molecular packing could facilitate carrier transport. The properties of these new materials indicate that they are good candidates for applications in organic optoelectronics.

Cite this article

Jing Wang , Linlin Wu , Qian Wang . Synthesis and Characterization of New Indeno[1,2-b]fluorene-6,12-dione Derivatives[J]. Chinese Journal of Organic Chemistry, 2023 , 43(1) : 223 -228 . DOI: 10.6023/cjoc202206038

References

[1]
Jiang, H.; Zhu, S. L.; Cui, Z. D.; Li, Z. Y.; Liang, Y. Q.; Zhu, J. M.; Hu, Peng.; Zhang, H. L.; Hu, W. P. Chem. Soc. Rev. 2022, 51, 3071.
[2]
Jiang, H.; Hu, W. P. Angew. Chem., Int. Ed. 2020, 59, 1408.
[3]
Dong, H. L.; Zhu, H. F.; Meng, Q.; Gong, X.; Hu, W. P. Chem. Soc. Rev. 2012, 41, 1754.
[4]
Baeg, K. J.; Caironi, M.; Noh, Y. Y. Adv. Mater. 2013, 25, 4210.
[5]
Koo, J. H.; Kim, D. C.; Shim, H. J.; Kim, T. H.; Kim, D. H. Adv. Funct. Mater. 2018, 28, 1801834.
[6]
Zschieschang, U.; Yamamoto, T.; Takimiya, K.; Kuwabara, H.; Ikeda, M.; Sekitani, T.; Someya, T.; Klauk, H. Adv. Mater. 2011, 23, 654.
[7]
Zhan, Y. Q.; Mei, Y. F.; Zheng, L. R. J. Mater. Chem. C 2014, 2, 1220.
[8]
Zhang, C. C.; Chen, P. L.; Hu, W. P. Chem. Soc. Rev. 2015, 44, 2087.
[9]
Chen, D.; Pei, Q. B. Chem. Rev. 2017, 117, 11239.
[10]
Han, S. T.; Zhou, Y.; Roy, V. A. L. Adv. Mater. 2013, 25, 5425.
[11]
McNellis, E. R.; Schott, S.; Sirringhaus, H.; Sinova, J. Phys. Rev. Mater. 2018, 2, 074405.
[12]
Kuehne, A. J. C.; Gather, M. C. Chem. Rev. 2016, 116, 12823.
[13]
Liu, Y.; Yu, G.; Liu, Y. Q. Sci. China: Chem. 2010, 53, 779.
[14]
Cai, Z. X.; Awais, M. A.; Zhang, N.; Yu, L. P. Chem, 2018, 4, 2538.
[15]
Cinar, M. E.; Ozturk, T. Chem. Rev. 2015, 115, 3036.
[16]
Dai, X. X.; Cheng, X. D.; Kan, Z. P.; Xiao, Z. Y.; Duan, T. N.; Hu, C.; Lu, S. R. Chin. J. Org. Chem. 2020, 40, 4031. (in Chinese)
[16]
(戴学新, 成晓东, 阚志鹏, 肖泽云, 段泰男, 胡超, 陆仕荣, 有机化学, 2020, 40, 4031.)
[17]
Li, H. Y.; Tee, B. C. K.; Cha, J. J.; Cui, Y.; Chung, J. W.; Lee, S. Y.; Bao, Z. N. J. Am. Chem. Soc. 2012, 134, 2760.
[18]
Dong, H. L.; Hu, W. P. Acc. Chem. Res. 2016, 49, 2435.
[19]
Kitamura, M.; Arakawa, Y. J. Phys.: Condens. Matter 2008, 20, 184011.
[20]
Jurchescu, O. D.; Popinciuc, M.; van Wees, B. J.; Palstra, T. T. M. Adv. Mater. 2007, 19, 688.
[21]
Maliakal, A.; Raghavachari, K.; Katz, H.; Chandross, E.; Siegrist, T. Chem. Mater. 2004, 16, 4980.
[22]
Ebata, H.; Izawa, T.; Miyazaki, E.; Takimiya, K.; Ikeda, M.; Kuwabara, H.; Yui, T. J. Am. Chem. Soc. 2007, 129, 15732.
[23]
Usta, H.; Risko, C.; Wang, Z.; Huang, H.; Deliomeroglu, M. K.; Zhukhovitskiy, A.; Facchetti, A.; Marks, T. J. J. Am. Chem. Soc. 2009, 131, 5586.
[24]
Fan, Z. P.; Li, X. Y.; Luo, X. E.; Fei, X.; Sun, B.; Chen, L. C.; Shi, Z. F.; Sun, C. L.; Shao, X. F.; Zhang, H. L. Adv. Funct. Mater. 2017, 27, 1702318.
[25]
Sung, H.; Lin, H. Macromolecules 2004, 37, 7945.
[26]
Hou, J. H.; Tan, Z. A.; Yan, Y.; He, Y. J.; Yang, C. H.; Li, Y. F. J. Am. Chem. Soc. 2006, 128, 4911.
[27]
Zhao, C. C.; Zhang, Y.; Ng, M. K. J. Org. Chem. 2007, 72, 6364.
[28]
Rose, B. D.; Santa Maria, P. J., Fix, A. G.; Vonnegut, C. L.; Zakharov, L. N.; Parkin, S. R. Michael M. H. Beilstein J. Org. Chem. 2014, 10, 2122.
[29]
Wang, J.; Zeng, W. L.; Xu, H.; Li, B.; Cao, X. P.; Zhang, H. L. Chin. J. Chem. 2012, 30, 681.
[30]
Gao, X. K.; Wu, W. P.; Liu, Y. Q.; Jiao, S. B.; Qiu, W. F.; Yu, G.; Wang, L. P.; Zhu, D. B. J. Mater. Chem. 2007, 17, 736
[31]
Romain, M.; Chevrier, M.; Bebiche, S.; Mohammed-Brahim, T.; Rault-Berthelot, J.; Jacques, E.; Poriel, C. J. Mater. Chem. C 2015, 3, 5742.
[32]
Kobayashi, N.; Sasaki, M.; Nomoto, K. Chem. Mater. 2009, 21, 552.
Outlines

/