Chinese Journal of Organic Chemistry >
Advances in the Synthesis of Energetic Compounds Based on 1,2,3-Triazoles
Received date: 2022-07-06
Revised date: 2022-08-18
Online published: 2022-10-25
Supported by
National Natural Science Foundation(22175025)
Energetic compounds based on 1,2,3-triazole have the features of high density, high enthalpy of formation and good thermal stability, and these compounds have been extensively studied by researchers in recent years. The latest achievements of energetic compounds based on monocyclic 1,2,3-triazole, polycyclic 1,2,3-triazole and fused ring 1,2,3-triazole are reviewed, and their preparation, sensitivities and detonation performance are also summarized in details. The results show that 1,2,3-triazole compounds have good performance and stability. These compounds show important research value and potential for application in the field of energetic materials. Finally, the development status of 1,2,3-triazole compounds is summarized and prospected, and the possible research directions of various 1,2,3-triazole energetic materials in the future are put forward, in order to provide some reference for researchers engaged in energetic materials.
Zujia Lu , Jian Qin , Jinting Wu , Wenli Cao , Baolong Kuang , Jianguo Zhang . Advances in the Synthesis of Energetic Compounds Based on 1,2,3-Triazoles[J]. Chinese Journal of Organic Chemistry, 2023 , 43(2) : 526 -554 . DOI: 10.6023/cjoc202204010
| [1] | Guo, Z.; Wu, Y.; Deng, C.; Yang, G.; Zhang, J.; Sun, Z.; Ma, H.; Gao, C.; An, Z. Inorg. Chem. 2016, 55, 11064. |
| [2] | Liu, Q.; Jin, B.; Zhang, Q.; Shang, Y.; Guo, Z.; Tan, B.; Peng, R. Mater. 2016, 9, 681. |
| [3] | Klap?tke, T. M.; Sabate, C. M. Chem. Mater. 2008, 20, 1750. |
| [4] | Devi, A.; Ghule, V. D. Can. J. Chem. 2016, 94, 738. |
| [5] | Klap?tke, T. M.; Stiasny, B.; Stierstorfer, J. ChemistrySelect 2016, 1, 4057. |
| [6] | Shen, C.; Wang, P.; Lu, M. J. Phys. Chem. A 2015, 119, 8250. |
| [7] | Roknabadi, A. G.; Keshavarz, M. H.; Esmailpour, K.; Zamani, M. J. Iran. Chem. Soc. 2017, 14, 57. |
| [8] | Tsyshevsky, R.; Zverev, A. S.; Mitrofanov, A. Y.; Ilyakova, N. N.; Kostyanko, M. V.; Luzgarev, S. V.; Garifzianova, G. G.; Kuklja, M. M. J. Phys. Chem. C 2016, 120, 24835. |
| [9] | Yin, P.; Mitchell, L. A.; Parrish, D. A.; Shreeve, J. M. Angew. Chem., Int. Ed. 2016, 55, 14409. |
| [10] | Wu, J. W.; Zhang, J. G.; Zhang, T. L.; Yang, L. Cent. Eur. J. Energ. Mater. 2015, 12, 417. |
| [11] | Wu, J.-T.; Zhang, J.-G.; Qin, J.; Yin, X.; Wu, L. Z. Anorg. Allg. Chem. 2016, 642, 409. |
| [12] | Cao, W.; Qin, J.; Zhang, J.; Sinditskii, V. P. Molecules 2021, 26, 6735. |
| [13] | Zhang, J.; Dharavath, S.; Mitchell, L. A.; Parrish, D. A.; Shreeve, J. N. M. J. Am. Chem. Soc. 2016, 138, 7500. |
| [14] | Tao, G.-H.; Twamley, B.; Shreeve, J. M. J. Mater. Chem. 2009, 19, 5850. |
| [15] | Thottempudi, V.; Shreeve, J. M. J. Am. Chem. Soc. 2011, 133, 19982. |
| [16] | Dippold, A. A.; Klap?tke, T. M. J. Am. Chem. Soc. 2013, 135, 9931. |
| [17] | Rao, K. S.; Chaudhary, A. K. RSC Adv. 2016, 6, 47646. |
| [18] | Yin, P.; Parrish, D. A.; Shreeve, J. M. Angew. Chem., nt. Ed. 2014, 53, 12889. |
| [19] | Khadem, E.; Shafei, E. J. Chem. Soc. 1958, 3117. |
| [20] | Bargamov, G. G.; Bargamova, M. D. Russ. Chem. Bull. 1995, 44, 2422. |
| [21] | Harada, K.; Oda, M.; Matsushita, A.; Shirai, M. Heterocycles 1998, 48, 694. |
| [22] | Kaplan, G.; Drake, G.; Tollison, K.; Hall, L.; Hawkins, T. J. Heterocycl. Chem. 2005, 42, 19. |
| [23] | Laus., G. ;, Kahlenberg, V. ;, T?bbens, D. M. ;, Jetti, R. K. R. ;, Griesser, U. J. ;, Schütz, J. ;, Kristeva, E. ;, Wurst, K. ;, Schottenberger, H. Cryst. Growth. Des. 2006, 6, 404. |
| [24] | Shi, H.-G.; Li, S.-H.; Li, Y.-C.; Li, X.-T.; Pang, S.-P. Chin. J. Energy Mater. 2008, 16, 676. (in Chinese) |
| [24] | (施宏刚, 李生华, 李玉川, 李小童, 庞思平, 含能材料, 2008, 16, 676.) |
| [25] | Lin, Q.-H.; Li, Y.-C.; Li, Y.-Y.; Wang, Z.; Liu, W.; Qi, C.; Pang, S.-P. J. Mater. Chem. 2012, 22, 666. |
| [26] | Zhou, J.; Zhang, J.; Wang, B.; Qiu, L.; Xu, R.; Sheremetev, A. B. FirePhysChem 2022, 2, 83. |
| [27] | Zhang, Z.-B.; Zhang, J.-G. J. Mol. Struct. 2018, 1158, 88. |
| [28] | Szimhardt, N.; Wurzenberger, M. H. H.; Zeisel, L.; Gruhne, M. S.; Lommel, M.; Klap?tke, T. M.; Stierstorfer, J. Chem.-Eur. J. 2019, 25, 1963. |
| [29] | Huang, Y.; Gao, H.; Twamley, B.; Shreeve, J. N. M. Eur. J. Inorg. Chem. 2008, 2008, 2560. |
| [30] | Piercey, D. G.; Chavez, D. E.; Heimsch, S.; Kirst, C.; Klap?tke, T. M.; Stierstorfer, J. Propellants Explos., Pyrotech. 2015, 40, 491. |
| [31] | Shitov, O. P.; Vyazkov, V. A.; Tartakovskii, V. A. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1989, 38, 2440. |
| [32] | Klap?tke, T. M.; Piercey, D. G.; Stierstorfer, J. Eur. J. Inorg. Chem. 2013, 2013, 1509. |
| [33] | Klap?tke, T. M.; Petermayer, C.; Piercey, D. G.; Stierstorfer, J. J. Am. Chem. Soc. 2012, 134, 20827. |
| [34] | Tartakovsky, V. A. MRS Online Proc. Libr. 1995, 15. |
| [35] | Ugrak, B.; Vinogradov, V.; Dalinger, I.; Shevelev, S. Russ. Chem. Bull. 1995, 44, 2087. |
| [36] | Wozniak, D. R.; Salfer, B.; Zeller, M.; Byrd, E. F. C.; Piercey, D. G. ChemistryOpen 2020, 9, 806. |
| [37] | Baryshnikov, A.; Erashko, V.; Zubanova, N.; Ugrak, B.; Shevelev, S.; Fainzil'berg, A.; Laikhter, A.; Mel'nikova, L.; Semenov, V. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1992, 41, 751. |
| [38] | Pagoria, P. F.; Lee, G. S.; Mitchell, A. R.; Schmidt, R. D. In Insensitive Munitions & Energetic Materials Technology Symposium, Livermore, California, 2001, pp. 1-7. |
| [39] | Wang, B.; Li, J.; Huo, H.; Fan, X.; Fu, X.; Zhou, C. Chin. J. Chem. 2010, 28, 781. |
| [40] | Sikder, A. K.; Geetha, M.; Sarwade, D. B.; Agrawal, J. P. J. Hazard. Mater. 2001, 82, 1. |
| [41] | Zhang, Y.-Q.; Parrish, D. A.; Shreeve, J. M. J. Mater. Chem. A 2013, 1, 585. |
| [42] | Liu, L.; Zhang, Y.; Li, Z.; Zhang, S. J. Mater. Chem. A 2015, 3, 14768. |
| [43] | Zhou, T.; Li, Y.; Xu, K.; Song, J.; Zhao, F. New J. Chem. 2017, 41, 168. |
| [44] | He, C.-L.; Yin, P.; Mitchell, L. A.; Parrish, D. A.; Shreeve, J. N. M. Chem. Commun. 2016, 52, 8123. |
| [45] | Johansson, P.; Béranger, S.; Armand, M.; Nilsson, H.; Jacobsson, P. Solid State Ionics 2003, 156, 129. |
| [46] | Egashira, M.; Scrosati, B.; Armand, M.; Béranger, S.; Michot, C. Electrochem. Solid-State Lett. 2003, 6, A71. |
| [47] | Sabaté, C. M.; Jeanneau, E.; Delalu, H. Dalton Trans. 2012, 41, 3817. |
| [48] | Crawford, M.-J.; Karaghiosoff, K.; Klapo?tke, T. M.; Martin, F. A. Inorg. Chem. 2009, 48, 1731. |
| [49] | Zhang, Y.; Du, Z.; Han, Z.; Zhao, Z.; Yao, Q. Propellants Explos., Pyrotech. 2015, 40, 960. |
| [50] | Gu, H.; Ma, Q.; Huang, S.; Zhang, Z.; Zhang, Q.; Cheng, G.; Yang, H.; Fan, G. Chem.-Asian J. 2018, 13, 2786. |
| [51] | Yu, Q.; Yin, P.; Zhang, J.; He, C.; Imler, G. H.; Parrish, D. A.; Shreeve, J. M. J. Am. Chem. Soc. 2017, 139, 8816. |
| [52] | Zhang, J.; Dharavath, S.; Mitchell, L. A.; Parrish, D. A.; Shreeve, J. M. J. Am. Chem. Soc. 2016, 138, 7500. |
| [53] | He, C.; Shreeve, J. M. Angew. Chem., Int. Ed. 2016, 55, 772. |
| [54] | Yin, X.; Li, J.; Zhang, G.; Gu, H.; Ma, Q.; Wang, S.; Wang, J. J. Therm. Anal. Calorim. 2018, 135, 2317. |
| [55] | Baryshnikov, A. T.; Erashko, V. I.; Zubanova, N. I.; Ugrak, B. I.; Shevelev, S. A.; Fainzilberg, A. A.; Semenov, V. V. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1992, 41, 1657. |
| [56] | He, C.-L.; Shreeve, J. M. Angew. Chem.,Int. Ed. 2015, 54, 6260. |
| [57] | Li, Y.-C.; Qi, C.; Li, S.-H.; Zhang, H.-J.; Sun, C.-H.; Yu, Y.-Z.; Pang, S.-P. J. Am. Chem. Soc. 2010, 132, 12172. |
| [58] | Li, Y.-C.; Li, S.-H.; Qi, C.; Zhang, H.-J.; Zhu, M.-Y.; Pang, S.-P. Acta Chim. Sinica 2011, 69, 2159. (in Chinese) |
| [58] | (李玉川, 李生华, 祁才, 张慧娟, 朱梦宇, 庞思平, 化学学报, 2011, 69, 2159.) |
| [59] | Wozniak, D. R.; Salfer, B.; Zeller, M.; Byrd, E. F. C.; Piercey, D. G. Org. Lett. 2020, 22, 9114. |
| [60] | Lai, Q.; Fei, T.; Yin, P.; Shreeve, J. N. M. Chem. Eng. J. 2021, 410, 7. |
| [61] | Feng, S.; Li, Y.; Lai, Q.; Cai, J.; Wang, Z.; Yin, P.; He, C.; Pang, S. Chem. Eng. J. 2022, 430, 133181. |
| [62] | Yang, H.; Huang, L.; Xu, M.; Tang, Y.; Wang, B.; Cheng, G. J. Org. Chem. 2019, 84, 10629. |
| [63] | Hanselmann, R.; Job, G. E.; Johnson, G.; Lou, R.; Martynow, J. G.; Reeve, M. M. Org. Process Res. Dev. 2009, 14, 152. |
| [64] | Xu, Z.; Cheng, G.; Zhu, S.; Lin, Q.; Yang, H. J. Mater. Chem. A 2018, 6, 2239. |
| [65] | Baryshnikov, A.; Erashko, V.; Zubanova, N.; Ugrak, B.; Shevelev, S.; Fainzilberg, A.; Semenov, V. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1992, 41, 1657. |
| [66] | Tang, Y.; Yin, Z.; Chinnam, A. K.; Staples, R. J.; Shreeve, J. M. Inorg. Chem. 2020, 59, 17766. |
| [67] | Gu, H.; Xiong, H.; Yang, H.; Cheng, G. Chem. Eng. J. 2021, 408, 128021. |
| [68] | Hiskey, M. A.; Chavez, D. E.; Naud, D. L. US 6214139, 2001. |
| [69] | Du, Z.; Zhang, Y.; Han, Z.; Yao, Q. Propellants Explos. Pyrotech. 2015, 40, 954. |
| [70] | Vorona, S.; Artamonova, T.; Zevatskii, Y.; Myznikov, L. Synthesis 2014, 46, 781. |
| [71] | Dippold, A. A.; Izsak, D.; Klap?tke, T. M.; Pfluger, C. Chemistry 2016, 22, 1768. |
| [72] | Chen, D.; Jing, D.; Zhang, Q.; Xue, X.; Gou, S.; Li, H.; Nie, F. Chem.-Asian J. 2017, 12, 3141. |
| [73] | Izsak, D.; Klap?tke, T. M.; Pflueger, C. Dalton Trans. 2015, 44, 17054. |
| [74] | Izsak, D.; Klap?tke, T. M.; Lutter, F. H.; Pfluger, C. Eur. J. Inorg. Chem. 2016, 2016, 1720. |
| [75] | Liu, Y.; He, C.; Tang, Y.; Imler, G. H.; Parrish, D. A.; Shreeve, J. M. Dalton Trans. 2019, 48, 3237. |
| [76] | Feng, S.; Yin, P.; He, C.; Pang, S.; Shreeve, J. M. J. Mater. Chem. A 2021, 9, 12291. |
| [77] | Bian, C.; Wang, K.; Liang, L.; Zhang, M.; Li, C.; Zhou, Z. Eur. J. Inorg. Chem. 2014, 2014, 6022. |
| [78] | Biagi, G.; Giorgi, I.; Livi, O.; Nardi, A.; Scartoni, V. J. Heterocycl. Chem. 2002, 39, 1293. |
| [79] | Baines, K. M.; Rourke, T. W.; Vaughan, K.; Hooper, D. L. J. Org. Chem. 2002, 46, 856. |
| [80] | Cao, Y.; Huang, H.; Pang, A.; Lin, X.; Yang, J.; Gong, X.; Fan, G. Chem. Eng. J. 2020, 393, 8. |
| [81] | Srinivas, D.; Ghule, V. D.; Tewari, S. P.; Muralidharan, K. Chem.- Eur. J. 2012, 18, 15031. |
| [82] | Pereira, C.; Stefani, H.; Guzen, K.; Orfao, A. Lett. Org. Chem. 2007, 4, 43. |
| [83] | Zhu, L.; Guo, P.; Li, G.; Lan, J.; Xie, R.; You, J. J. Org. Chem. 2007, 72, 8535. |
| [84] | Thottempudi, V.; Forohor, F.; Parrish, D. A.; Shreeve, J. N. M. Angew. Chem.,Int. Ed. 2012, 51, 9881. |
| [85] | Klap?tke, T. M.; Pflueger, C.; Reintinger, M. W. Eur. J. Inorg. Chem. 2016, 2016, 138. |
| [86] | Yang, X.; Lin, X.; Yang, L.; Zhang, T. Chem. Commun. 2018, 54, 10296. |
| [87] | Thottempudi, V.; Yin, P.; Zhang, J.-H.; Parrish, D. A.; Shreeve, J. N. M. Chem.-Eur. J. 2014, 20, 542. |
| [88] | Zhang, G.; Xiong, H.; Yang, P.; Lei, C.; Hu, W.; Cheng, G.; Yang, H. Chem. Eng. J. 2021, 404, 126514. |
| [89] | Hu, L.; Staples, R. J.; Shreeve, J. M. Chem. Eng. J. 2021, 420, 129839. |
| [90] | Gunasekaran, A.; Boyer, J. H. Heteroat. Chem. 1993, 4, 521. |
| [91] | Voronin, A. A.; Fedyanin, I. V.; Churakov, A. M.; Pivkina, A. N.; Muravyev, N. V.; Strelenko, Y. A.; Klenov, M. S.; Lempert, D. B.; Tartakovsky, V. A. ACS Appl. Energy Mater. 2020, 3, 9401. |
| [92] | Yin, P.; He, C.-L.; Shreeve, J. M. J. Mater. Chem. A 2016, 4, 1514. |
/
| 〈 |
|
〉 |