Density Functional Theory Study for Exploring the Mechanisms of the [3+2] Cycloaddition Reactions between 1-R-3-Phenylpropylidenecyclopropane (R=Me/H) and Furfural Catalyzed by Pd(0)

  • Yueling Liu ,
  • Xinxin Zhong ,
  • Ganbing Zhang
Expand
  • Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Applications of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062
* Corresponding author. E-mail:

Received date: 2022-07-07

  Revised date: 2022-08-30

  Online published: 2022-11-01

Supported by

National Natural Science Foundation of China(22076059)

Abstract

The optimal geometric structures and thermodynamic properties for all stationary points (reactants, intermediates, transition states, and products) on each pathway of the [3+2] cycloaddition reactions between 1-R-3-phenylpropylidenecyclo- propane (R=Me/H) and furfural with model catalyst Pd(PH3)2 have been computed by using density functional theory (DFT) method with M06 functional combined with Stuttgart/Dresden relativistic effective core potential for exploring the mechanisms of the reactions catalyzed by Pd(PPh3)4. Based on the obtained free energy curves, energetic span analyses were carried out. The calculated results show that both reactions go through three steps: (1) Pd(PH3)2 catalyst oxidatively added to methylenecyclopropanes, in which Pd inserted into the distal carbon-carbon bond of methylenecyclopropanes ternary ring to form palladium cyclobutane intermediate; (2) six-membered oxa-metal ring compounds were formed by stepwise additions of palladium cyclobutane intermediate with the carbonyl of furan formaldehyde; (3) Pd(PH3)2 catalyst dissociates from the six-membered oxy-hetero-metal ring compound through reductive elimination, and the five-membered-ring final products, methylene tetrahydrofurans were obtained. In addition, with the energetic span model proposed by Kozuch and Shaik, the calculated turnover frequency (TOF)-determining transition states (TDTS) for both catalytic cycles with R=Me/H are the same as the transition state (TS) of the reductive elimination step, however the TOF-determining intermediate (TDI) in each catalytic cycle is different from each other. As a result, the apparent free energy barrier (energetic span, δE) for the catalytic cycle with R=Me is 9.5 kJ/mol lower than that for the catalytic cycle with R=H, and the estimated TOF at 120 ℃ for the catalytic cycle with R=Me is ca 18 times larger than that for the catalytic cycle with R=H. These indicate that Pd(PPh3)4 is more effective for catalytic cycle with R=Me, which accounts well for the previous experimental observation that the yield for the reaction with R=Me is much higher than that for the reaction with R=H under the catalysis of Pd(PPh3)4 at 120 ℃.

Cite this article

Yueling Liu , Xinxin Zhong , Ganbing Zhang . Density Functional Theory Study for Exploring the Mechanisms of the [3+2] Cycloaddition Reactions between 1-R-3-Phenylpropylidenecyclopropane (R=Me/H) and Furfural Catalyzed by Pd(0)[J]. Chinese Journal of Organic Chemistry, 2023 , 43(2) : 660 -667 . DOI: 10.6023/cjoc202203012

References

[1]
Hoffmeyer, P.; Schneider, C. Eur. J. Org. Chem. 2019, 2019, 5326.
[2]
Delost, M. D.; Smith, D. T.; Anderson, B. J.; Njardarson, J. T. J. Med. Chem. 2018, 61, 10996.
[3]
Roglans, A.; Pla-Quintana, A.; Sola, M. Chem. Rev. 2021, 121, 1894.
[4]
Cao, H.; Chen, F.; Su, C.; Yu, L. Adv. Synth. Catal. 2019, 362, 438.
[5]
Noyori, R.; Kumagai, Y.; Umeda, I.; Takaya, H. J. Am. Chem. Soc. 1972, 94, 4018.
[6]
Inoue, Y.; Hibi, T.; satake, M.; Hashimoto, H. J. Chem. Soc., Chem. Commun. 1979, 982.
[7]
Nakamura, I.; Oh, B. H.; Saito, S.; Yamamoto, Y. Angew. Chem., Int. Ed. 2001, 40, 1298.
[8]
Oh, B. H.; Nakamura, I.; Saito, S.; Yamamoto, Y. Tetrahedron Lett. 2001, 42, 6203.
[9]
Kawasaki, T.; Saito, S.; Yamamoto, Y. J. Org. Chem. 2002, 67, 4911.
[10]
(a) Lewis, R. T.; Motherwell, W. B.; Shipman, M. J. Chem. Soc., Chem. Commun. 1988, 948.
[10]
(b) Lopez, F.; Delgado, A.; Rodriguez, J. R.; Castedo, L.; Mascarenas, J. L. J. Am. Chem. Soc. 2004, 126, 10262.
[10]
(c) Yao, B.; Li, Y.; Liang, Z.; Zhang, Y. Org. Lett. 2011, 13, 640.
[10]
(d) Zhang, D.-H.; Shi, M. Tetrahedron Lett. 2012, 53, 487.
[11]
Verdugo, F.; da Concepción, E.; Rodi?o, R.; Calvelo, M.; Mascare?as, J. L.; López, F. ACS Catal. 2020, 10, 7710.
[12]
Kuila, B.; Naikoo, R.; Mahajan, D.; Singh, P.; Bhargava, G. Synlett 2019, 31, 65.
[13]
Verdugo, F.; Villarino, L.; Durán, J.; Gulías, M.; Mascare?as, J. L.; López, F. ACS Catal. 2018, 8, 6100.
[14]
Torre, A. D. L.; Cuyamendous, C.; Bultel-Poncé, V.; Durand, T.; Galano, J.-M.; Oger, C. Tetrahedron 2016, 72, 5003.
[15]
(a) Xue, L.; Lin, Z. Chem. Soc. Rev. 2010, 39, 1692.
[15]
(b) Bonney, K. J.; Schoenebeck, F. Chem. Soc. Rev. 2014, 43, 6609.
[15]
(c) Sperger, T.; Sanhueza, I. A.; Kalvet, I.; Schoenebeck, F. Chem. Rev. 2015, 115, 9532.
[16]
(a) Xie, H. J.; Fan, T.; Lei, Q. F.; Fang, W. J. Sci. China Chem. 2016, 59, 1432.
[16]
(b) Qi, X.; Li, Y.; Bai, R.; Lan, Y. Acc. Chem. Res. 2017, 50, 2799.
[17]
(a) Cao, M. N.; Xie, H. J. Chin. Chem. Lett. 2021, 32, 319.
[17]
(b) Zhang, S.; Hong, X. Acc. Chem. Res. 2021, 54, 2158.
[18]
Kozuch, S.; Shaik, S. Acc. Chem. Res. 2010, 44, 101.
[19]
Kozuch, S.; Martin, J. M. L. ACS Catal. 2011, 1, 246.
[20]
Uhe, A.; Kozuch, S.; Shaik, S. J. Comput. Chem. 2011, 32, 978.
[21]
(a) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2007, 120, 215.
[21]
(b) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378
[22]
(a) Zhao, B.; Shang, R.; Wang, G.; Wang, S.; Chen, H.; Fu, Y. ACS Catal. 2020, 10, 1334.
[22]
(b) Huang, L.; Wang, Y.; Liu, J.; Li, S.; Zhang, W.; Lan, Y. Chin. J. Org. Chem. 2021, 41, 4347. (in Chinese)
[22]
(黄利, 王毓浩, 刘吉英, 李世俊, 张文静, 蓝宇, 有机化学, 2021, 41, 4347.)
[23]
Stille, J. K.; Lau, K. S. Y. Acc. Chem. Res. 1977, 10, 434.
[24]
Mondal, M.; Panda, M.; McKee, V.; Kerrigan, N. J. J. Org. Chem. 2019, 84, 11983.
[25]
Xu, X. F.; Liu, P.; Shu, X. Z.; Tang, W. P.; Houk, K. N. J. Am. Chem. Soc. 2013, 135, 9271.
[26]
Zhou, Y.; Shang, Z.; Li, R.; Xu, X. Sci. Sin. Chim. 2019, 49, 1409. (in Chinese)
[26]
(周彧, 尚贞锋, 李瑞芳, 许秀芳, 中国科学?化学, 2019, 49, 1409.)
[27]
Tang, Y.; Li, H.; Li, L. Sci. Sin. Chim. 2017, 47, 787. (in Chinese)
[27]
(唐艳辉, 李慧, 李龙飞, 中国科学?化学, 2017, 47, 787.)
[28]
Garcia-Fandino, R.; Gulias, M.; Mascarenas, J. L.; Cardenas, D. J. Dalton Trans. 2012, 41, 9468.
[29]
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, Jr. J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision C01, Gaussian, Inc., Wallingford CT, 2010.
[30]
Legault, C. Y., Université de Sherbrooke, CYLview20, 2020 (http://www.cylview.org
Outlines

/