N-Heterocyclic Carbene-Pyridine Manganese Complex/ Tetrabutylammonium Iodide Catalyzed Synthesis of Cyclic Carbonate from CO2 and Epoxide

  • Guijie Liu ,
  • Zhengqiang Fu ,
  • Fei Chen ,
  • Caixia Xu ,
  • Min Li ,
  • Ning Liu
Expand
  • State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003
* Corresponding authors. E-mail: ;

Received date: 2022-09-08

  Revised date: 2022-09-29

  Online published: 2022-11-08

Supported by

Bingtuan Young and Middle-Aged Innovative Leading Scientists Program(2020CB027); Shihezi Young and Middle- Aged Innovative Leading Scientists Program(2019RC01)

Abstract

The bidentate N-heterocyclic carbene (NHC)-pyridine nitrogen manganese complex catalyzed coupling reaction of epoxides with CO2 was developed. The binary system resulting from the manganese complex Mn-2 in combination with tetrabutylammonium iodide (TBAI) exhibits the high activity for the synthesis of cyclic carbonate from epoxides and CO2. The binary catalytic system is suitable for a broad range of substrates scope, such as terminal epoxides and sterically hindered internal epoxides. A possible catalytic pathway was elaborated by UV-vis, FT-IR and HRMS method.

Cite this article

Guijie Liu , Zhengqiang Fu , Fei Chen , Caixia Xu , Min Li , Ning Liu . N-Heterocyclic Carbene-Pyridine Manganese Complex/ Tetrabutylammonium Iodide Catalyzed Synthesis of Cyclic Carbonate from CO2 and Epoxide[J]. Chinese Journal of Organic Chemistry, 2023 , 43(2) : 629 -635 . DOI: 10.6023/cjoc202206047

References

[1]
(a) Aresta, M.; Dibenedetto, A.; Angelini, A. Chem. Rev. 2014, 114, 1709.
[1]
(b) Klankermayer, J.; Wesselbaum, S.; Beydoun, K.; Leitner, W. Angew. Chem., Int. Ed. 2016, 55, 7296.
[2]
(a) Wang, S.; Xi, C. Chem. Soc. Rev. 2019, 48, 382.
[2]
(b) Lu, X.-B.; Ren, W.-M.; Wu, G.-P. Acc. Chem. Res. 2012, 45, 1721.
[2]
(c) Song, Q.-W.; Zhou, Z.-H.; He, L.-N. Green Chem. 2017, 19, 3707.
[2]
(d) He, X.; Qiu, L.-Q.; Wang, W.-J.; Chen, K.-H.; He, L.-N. Green Chem. 2020, 22, 7301.
[2]
(e) Song, L.; Jiang, Y.-X.; Zhang, Z.; Gui, Y.-Y.; Zhou, X.-Y.; Yu, D.-G. Chem. Commun. 2020, 56, 8355.
[2]
(f) Ran, C.-K.; Chen, X.-W.; Gui, Y.-Y.; Liu, J.; Song, L.; Ren, K.; Yu, D.-G. Sci. China: Chem. 2020, 63, 1336.
[2]
(g) You, Y.; Mita, T. Asian J. Org. Chem. 2022, 11, e202200082.
[3]
(a) Guo, L.; Lamb, K. J.; North, M. Green Chem. 2021, 23, 77.
[3]
(b) Claver, C.; Yeamin, M. B.; Reguero, M.; Masdeu-Bultó, A. M. Green Chem. 2020, 22, 7665.
[4]
(a) Andrea, K. A.; Butler, E. D.; Brown, T. R.; Anderson, T. S.; Jagota, D.; Rose, C.; Lee, E. M.; Goulding, S. D.; Murphy, J. N.; Kerton, F. M.; Kozak, C. M. Inorg. Chem. 2019, 58, 11231.
[4]
(b) Büttner, H.; Grimmer, C.; Steinbauer, J.; Werner, T. ACS Sustainable Chem. Eng. 2016, 4, 4805.
[4]
(c) Della?Monica, F.; Buonerba, A.; Paradiso, V.; Milione, S.; Grassi, A.; Capacchione, C. Adv. Synth. Catal. 2019, 361, 283.
[4]
(d) Paradiso, V.; Della Monica, F.; Lamparelli, D. H.; D'Aniello, S.; Rieger, B.; Capacchione, C. Catal. Sci. Technol. 2021, 11, 4702.
[4]
(e) Seong, E. Y.; Kim, J. H.; Kim, N. H.; Ahn, K.-H.; Kang, E. J. ChemSusChem 2019, 12, 409.
[5]
(a) Whiteoak, C. J.; Kielland, N.; Laserna, V.; Escudero-Adán, E. C.; Martin, E.; Kleij, A. W. J. Am. Chem. Soc. 2013, 135, 1228.
[5]
(b) Maquilón, C.; Limburg, B.; Laserna, V.; Garay-Ruiz, D.; González-Fabra, J.; Bo, C.; Martínez Belmonte, M.; Escudero-Adán, E. C.; Kleij, A. W. Organometallics 2020, 39, 1642.
[5]
(c) Saltarini, S.; Villegas-Escobar, N.; Martínez, J.; Daniliuc, C. G.; Matute, R. A.; Gade, L. H.; Rojas, R. S. Inorg. Chem. 2021, 60, 1172.
[5]
(d) Liu, J.; Yang, G.; Liu, Y.; Zhang, D.; Hu, X.; Zhang, Z. Green Chem. 2020, 22, 4509.
[6]
(a) Takaishi, K.; Nath, B. D.; Yamada, Y.; Kosugi, H.; Ema, T. Angew. Chem., Int. Ed. 2019, 58, 9984.
[6]
(b) Alonso de la Pe?a, M.; Merzoud, L.; Lamine, W.; Tuel, A.; Chermette, H.; Christ, L. J. CO2 Util. 2021, 44, 101380.
[6]
(c) Chen, J.; Wu, X.; Ding, H.; Liu, N.; Liu, B.; He, L. ACS Sustainable Chem. Eng. 2021, 9, 16210.
[6]
(d) Lang, X.-D.; Yu, Y. C.; He, L.-N. J. Mol. Catal. A: Chem. 2016, 420, 208.
[7]
(a) Jiang, X.; Gou, F.; Chen, F.; Jing, H. Green Chem. 2016, 18, 3567.
[7]
(b) Schoepff, L.; Monnereau, L.; Durot, S.; Jenni, S.; Gourlaouen, C.; Heitz, V. ChemCatChem 2020, 12, 5826.
[8]
Muthuramalingam, S.; Sankaralingam, M.; Velusamy, M.; Mayilmurugan, R. Inorg. Chem. 2019, 58, 12975.
[9]
(a) Castro-Osma, J. A.; Lamb, K. J.; North, M. ACS Catal. 2016, 6, 5012.
[9]
(b) Kiriratnikom, J.; Laiwattanapaisarn, N.; Vongnam, K.; Thavornsin, N.; Sae-ung, P.; Kaeothip, S.; Euapermkiati, A.; Namuangruk, S.; Phomphrai, K. Inorg. Chem. 2021, 60, 6147.
[10]
Longwitz, L.; Steinbauer, J.; Spannenberg, A.; Werner, T. ACS Catal. 2018, 8, 665.
[11]
Baalbaki, H. A.; Roshandel, H.; Hein, J. E.; Mehrkhodavandi, P. Catal. Sci. Technol. 2021, 11, 2119.
[12]
Fernández-Baeza, J.; Sánchez-Barba, L. F.; Lara-Sánchez, A.; Sobrino, S.; Martínez-Ferrer, J.; Garcés, A.; Navarro, M.; Rodríguez, A. M. Inorg. Chem. 2020, 59, 12422.
[13]
Xin, X.; Shan, H.; Tian, T.; Wang, Y.; Yuan, D.; You, H.; Yao, Y. ACS Sustainable Chem. Eng. 2020, 8, 13185.
[14]
(a) Jiang, X.; Gou, F.; Qi, C. J. CO2 Util. 2019, 29, 134.
[14]
(b) Milani, J. L. S.; Meireles, A. M.; Cabral, B. N.; de Almeida Bezerra, W.; Martins, F. T.; daSilva Martins, D. C.; das Chagas, R. P. J. CO2 Util. 2019, 30, 100.
[14]
(c) Bai, D.; Wang, X.; Song, Y.; Li, B.; Zhang, L.; Yan, P.; Jing, H. Chin. J. Catal. 2010, 31, 176.
[14]
(d) Cuesta-Aluja, L.; Castilla, J.; Masdeu-Bultó, A. M.; Henriques, C. A.; Calvete, M. J. F.; Pereira, M. M. J. Mol. Catal. A: Chem. 2016, 423, 489.
[15]
(a) Jutz, F.; Grunwaldt, J.-D.; Baiker, A. J. Mol. Catal. A: Chem. 2008, 279, 94.
[15]
(b) Jutz, F.; Grunwaldt, J.-D.; Baiker, A. J. Mol. Catal. A: Chem. 2009, 297, 63.
[16]
Srivastava, R.; Bennur, T. H.; Srinivas, D. J. Mol. Catal. A: Chem. 2005, 226, 199.
[17]
Tiffner, M.; Gonglach, S.; Haas, M.; Sch?fberger, W.; Waser, M. Chem. Asian J. 2017, 12, 1048.
[18]
Lu, J.; Ma, X.; Singh, V.; Zhang, Y.; Wang, P.; Feng, J.; Ma, P.; Niu, J.; Wang, J. Inorg. Chem. 2018, 57, 14632.
[19]
Man, M. L.; Lam, K. C.; Sit, W. N.; Ng, S. M.; Zhou, Z.; Lin, Z.; Lau, C. P. Chem.-Eur. J. 2006, 12, 1004.
[20]
Fu, Z.; Wang, X.; Tao, S.; Bu, Q.; Wei, D.; Liu, N. J. Org. Chem. 2021, 86, 2339.
[21]
Hugar, K. M.; Kostalik IV, H. A.; Coates, G. W. J. Am. Chem. Soc. 2015, 137, 8730.
[22]
(a) Darensbourg, D. J.; Yarbrough, J. C. J. Am. Chem. Soc. 2002, 124, 6335.
[22]
(b) Darensbourg, D. J.; Lewis, S. J.; Rodgers, J. L.; Yarbrough, J. C. Inorg. Chem. 2003, 42, 581.
[22]
(c) Li, F.; Xiao, L.; Xia, C.; Hu, B. Tetrahedron Lett. 2004, 45, 8307.
[22]
(d) Miao, C. X.; Wang, J. Q.; Wu, Y.; Du, Y.; He, L. N. ChemSusChem 2008, 1, 236.
[22]
(e) Sope?a, S.; Martin, E.; Escudero-Adán, E. C.; Kleij, A. W. ACS Catal. 2017, 7, 3532.
[23]
Whiteoak, C. J.; Martin, E.; Belmonte, M. M.; Benet-Buchholz, J.; Kleij, A. W. Adv. Synth. Catal. 2012, 354, 469.
[24]
Navarro, M.; Sánchez-Barba, L. F.; Garcés, A.; Fernández-Baeza, J.; Fernández, I.; Lara-Sánchez, A.; Rodríguez, A. M. Catal. Sci. Technol. 2020, 10, 3265.
[25]
Zhou, H.; Wang, G.-X.; Zhang, W.-Z.; Lu, X.-B. ACS Catal. 2015, 5, 6773.
[26]
Desens, W.; Kohrt, C.; Spannenberg, A.; Werner, T. Org. Chem. Front. 2016, 3, 156.
[27]
Büttner, H.; Steinbauer, J.; Werner, T. ChemSusChem 2015, 8, 2655.
[28]
Martín, C.; Whiteoak, C. J.; Martin, E.; Martínez Belmonte, M.; Escudero-Adán, E. C.; Kleij, A. W. Catal. Sci. Technol. 2014, 4, 1615.
[29]
Vagnoni, M.; Samorì, C.; Galletti, P. J. CO2 Util. 2020, 42, 101302.
[30]
Chen, F.; Liu, N.; Dai, B. ACS Sustainable Chem. Eng. 2017, 5, 9065.
[31]
Wang, J.-Q.; Dong, K.; Cheng, W.-G.; Sun, J.; Zhang, S.-J. Catal. Sci. Technol. 2012, 2, 1480.
[32]
Dong, T.; Zheng, Y.-J.; Yang, G.-W.; Zhang, Y.-Y.; Li, B.; Wu, G.-P. ChemSusChem 2020, 13, 4121.
[33]
Werner, T.; Büttner, H. ChemSusChem 2014, 7, 3268.
Outlines

/