ARTICLES

Copper-Catalyzed [4+2] Annulations of Sulfoxonium Ylides and o-Phenylenediamines

  • Chunsheng Li ,
  • Xiaoqi Lian ,
  • Lianfen Chen
Expand
  • School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing, Guangdong 526061

Received date: 2022-09-16

  Revised date: 2022-10-23

  Online published: 2022-12-12

Supported by

National Natural Science Foundation of China(22002139); Guangdong Basic and Applied Basic Research Foundation(2019A1515110550); Guangdong Basic and Applied Basic Research Foundation(2020A1515111156); Young Innovative Talents Project of General Colleges and Universities in Guangdong Province(2019KQNCX174); Young Innovative Talents Project of General Colleges and Universities in Guangdong Province(2020KQNCX096); Research Foundation of Zhaoqing University(202013); College Students’ Innovation and Entrepreneurship Training Program(202110580015)

Abstract

Herein, a novel [4+2] annulation of a wide range of sulfoxonium ylides and o-phenylenediamines was reported, which was catalyzed by cheap and commercially available copper catalyst. The research results indicated that under the optimal reaction conditions, the isolated yield was up to 93% with 10 mol% Cu(OAc)2 as catalyst, 1.0 equiv. of NaOAc as additive and 1,2-dichloroethane (DCE) as solvent at 80 ℃ for 24 h. This method features cheap and commerial available catalyst, mild reaction conditions, broad substrate scope and excellent functional groups tolerance.

Cite this article

Chunsheng Li , Xiaoqi Lian , Lianfen Chen . Copper-Catalyzed [4+2] Annulations of Sulfoxonium Ylides and o-Phenylenediamines[J]. Chinese Journal of Organic Chemistry, 2023 , 43(4) : 1492 -1498 . DOI: 10.6023/cjoc202209020

References

[1]
(a) Rodrigues, F. A. R.; Bomfim, I. D.; Cavalcanti, B. C.; Pessoa, C. D.; Wardell, J. L.; Wardell, S. M. S. V.; Pinheiro, A. C.; Kaiser, C. R.; Nogueira, T. C. M.; Low, J. N.; Gomes, L. R.; de Souza, M. V. N. Bioorg. Med. Chem. Lett. 2014, 24, 934.
[1]
(b) PHazeldine, S. T.; Polin, L.; Kushner, J.; Paluch, J.; White, K.; Edelstein, M.; Palomino, E.; Corbett, T. H.; Horwitz, J. P. J. Med. Chem. 2001, 44, 1758.
[2]
(a) Smits, R. A.; Lim, H. D.; Hanzer, A.; Zuiderveld, O. P.; Guaita, E.; Adami, M.; Coruzzi, G.; Leurs, R.; de Esch, I. J. P. J. Med. Chem. 2008, 51, 2457.
[2]
(b) Moorthy, N. S.; Manivannan, E.; Karthikeyan, C.; Trivedi, P. Mini-Rev. Med. Chem. 2013, 13, 1415.
[3]
(a) Parhi, A. K.; Zhang, Y.; Saionz, K. W.; Pradhan, P.; Kaul, M.; Trivedi, K.; Pilch, D. S.; LaVoie, E. J. Bioorg. Med. Chem. Lett. 2013, 23, 4968.
[3]
(b) Kaushal, T.; Srivastava, G.; Sharma, A.; Negi, A. S. Bioorg. Med. Chem. 2019, 27, 16.
[4]
Achelle, S.; Baudequin, C.; Ple?, N. Dyes Pigm. 2013, 98, 575.
[5]
Dailey, S.; Feast, W. J.; Peace, R. J.; Sage, A. C.; Till, S.; Wood, E. L. J. Mater. Chem. 2001, 11, 2238.
[6]
(a) Chesneau, B.; Hardouin-Lerouge, M.; Hudhomme, P. Org. Lett. 2010, 12, 4868.
[6]
(b) Sessler, J. L.; Maeda, H.; Mizuno, T.; Lynch, V. M.; Furuta, H. J. Am. Chem. Soc. 2002, 124, 13474.
[7]
(a) More, S. V.; Sastry, M. N. V.; Yao, C.-F. Green Chem. 2006, 8, 91.
[7]
(b) Kim, S. Y.; Park, K. H.; Chung, Y. Chem. Commun. 2005, 10, 1321.
[7]
(c) Pandit, R. P.; Kim, S. H.; Lee, Y. R. Adv. Synth. Catal. 2016, 358, 3586.
[7]
(d) Harsha, K. B.; Rangappa, S.; Preetham, H. D.; Swaroop, T. R.; Gilandoust, M.; Rakesh, K. R.; Rangappa, K. S. ChemistrySelect 2018, 3, 5228.
[8]
(a) Viswanadham, K. K. D. R.; Reddy, M. P.; Sathyanarayana, P.; Ravi, O.; Kant, R.; Bathula, S. R. Chem. Commun. 2014, 50, 13517.
[8]
(b) Das, A.; Thomas, K. R. J. Asian J. Org. Chem. 2020, 9, 1820.
[8]
(c) Pardeshi, S. D.; Sathe, P. A.; Vadagaonkar, K. S.; Chaskar, A. C. Adv. Synth. Catal. 2017, 359, 4217.
[9]
(a) Yang, W.; Chen, Y.; Yao, Y.; Yang, X.; Lin, Q.; Yang, D. J. Org. Chem. 2019, 84, 11080.
[9]
(b) Okumura, S.; Okumura, Y.; Okumura, K.; Okumura, S. Chem. Commun. 2013, 49, 9266.
[10]
(a) Vidal-Albalat, A.; Rodríguez, S.; Gonza?lez, F. V. Org. Lett. 2014, 16, 1752.
[10]
(b) Shen, J.; Wang, X.; Lin, X.; Yang, Z.; Cheng, G.; Cui, X. Org. Lett. 2016, 18, 1378.
[10]
(c) Zhang, H.; Shen, J.; Yang, Z.; Cui, X. RSC Adv. 2019, 9, 7718.
[10]
(d) Liu, Y.; Chen, X.-L.; Zeng, F.-L.; Sun, K.; Qu, C.; Fan, L.-L.; An, Z.-L.; Li, R.; Jing, C.-F.; Wei, S.-K.; Qu, L.-B.; Yu, B.; Sun, Y.-Q.; Zhao, Y.-F. J. Org. Chem. 2018, 83, 11727.
[10]
(e) Li, F.; Tang, X.; Xu, Y.; Wang, C.; Wang, Z.; Li, Z.; Wang, L. Org. Lett. 2020, 22, 3900.
[11]
(a) Gopalaiah, K.; Saini, A.; Chandrudu, S. N.; Rao, D. C.; Yadav, H.; Kumar, B. Org. Biomol. Chem. 2017, 15, 2259.
[11]
(b) Ma, H.; Li, D.; Yu, W. Org. Lett. 2016, 18, 868.
[11]
(c) Han, X.; Lei, T.; Yang, X.-L.; Zhao, L.-M.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Tetrahedron Lett. 2017, 58, 1770.
[12]
(a) Daw, P.; Kumar, A.; Espinosa-Jalapa, N. A.; Diskin-Posner, Y.; Ben-David, Y.; Milstein, D. ACS Catal. 2018, 8, 7734.
[12]
(b) Mondal, A.; Sahoo, K. M.; Subaramanian, M.; Balaraman, E. J. Org. Chem. 2020, 85, 7181.
[12]
(c) Das, K.; Mondal, A.; Srimani, D. Chem. Commun. 2018, 54, 10582.
[13]
(a) Bera, A.; Bera, M.; Singh, K.; Banerjee, D. Chem. Commun. 2019, 55, 5958.
[13]
(b) Bains, A. K.; Singh, V.; Adhikari, D. J. Org. Chem. 2020, 85, 14971.
[13]
(c) Shee, S.; Panja, D.; Kundu, S. J. Org. Chem. 2020, 85, 2775.
[13]
(d) Hille, T.; Irrgang, T.; Kempe, R. Chem.-Eur. J. 2014, 20, 5569.
[13]
(e) Chakrabarti, K.; Maji, M.; Kundu, S. Green Chem. 2019, 21, 1999.
[13]
(f) Wu, J.; Darcel, C. J. Org. Chem. 2021, 86, 1023.
[13]
(g) Xie, F.; Li, Y.; Chen, X.; Chen, L.; Zhu, Z.; Li, B; Huang, Y.; Zhang, K.; Zhang, M. Chem. Commun. 2020, 56, 5997.
[14]
(a) Liu, X.; Li, W.; Zhuang, C.; Cao, H. Chin. J. Org. Chem. 2021, 41, 3459. (in Chinese)
[14]
(刘想, 李文, 庄灿展, 曹华, 有机化学, 2021, 41, 3459.)
[14]
(b) Li, D.; Wang, X.; Li, S.; Fu, C.; Li, Q.; Xu, D.; Ma, Y. Chin. J. Org. Chem. 2021, 41, 4610. (in Chinese)
[14]
(李丹丹, 王晓晨, 李闪闪, 付晨雨, 李倩倩, 许东涛, 马莹莹, 有机化学, 2021, 41, 4610.)
[15]
Corey, E. J.; Chaykovsky, M. J. Am. Chem. Soc. 1964, 86, 1640.
[16]
(a) Vaitla, J.; Bayer, A. Synthesis 2019, 51, 612.
[16]
(b) Wu, X.; Sun, S.; Yu, J.-T.; Cheng, J. Synlett 2019, 30, 21.
[16]
(c) Burtoloso, A. C. B.; Dias, R. M. P.; Leonarczyk, I. A. Eur. J. Org. Chem. 2013, 5005.
[16]
(d) Lu, L.-Q.; Li, T.-R.; Wang, Q.; Xiao, W.-J. Chem. Soc. Rev. 2017, 46, 4135.
[17]
(a) Bisag, G. D.; Ruggieri, S.; Fochi, M.; Bernardi, L. Org. Biomol. Chem. 2020, 18, 8793.
[17]
(b) Kumar, S.; Nunewar, S.; Oluguttula, S.; Nanduri, S.; Kanchupalli, V. Org. Biomol. Chem. 2021, 19, 1438.
[17]
(c) Caiuby, C. A. D.; Furniel, L. G.; Burtoloso, A. C. B. Chem. Sci. 2022, 13, 1192.
[18]
Rahman, Md. M.; Szostak, M. Org. Lett. 2021, 23, 4818.
[19]
(a) Xu, Y.; Zhou, X.; Zheng, G.; Li, X. Org. Lett. 2017, 19, 5256.
[19]
(b) Barday, M.; Janot, C.; Halcovitch, N. R.; Muir, J.; A?ssa, C. Angew. Chem., Int. Ed. 2017, 56, 13117.
[19]
(c) Ji, S.; Yan, K.; Li, B.; Wang, B. Org. Lett. 2018, 20, 5981.
[19]
(d) Li, H.; Wu, C.; Liu, H.; Wang, J. J. Org. Chem. 2019, 84, 13262.
[19]
(e) Xu, G.-D.; Huang, K. L.; Huang, Z.-Z. Adv. Synth. Catal. 2019, 361, 3318.
[19]
(f) Yu, J.; Wen, S.; Ba D. Lv, W.; Chen, Y.; Cheng, G. Org. Lett. 2019, 21, 6366.
[19]
(g) Nie, R.; Lai, R.; Lv, S.; Xu, Y.; Guo, L.; Wang, Q.; Wu, Y. Chem. Commun. 2019, 55, 11418.
[19]
(h) Jia, Q.; Kong, L.; Li, X. Org. Chem. Front. 2019, 6, 741.
[19]
(i) Kona, C. N.; Nishii, Y.; Miura, M. Org. Lett. 2020, 22, 4806.
[19]
(j) Zhang, L.; Xie, Z. Org. Lett. 2022, 24, 1318.
[20]
Li, C.; Li, M.; Zhong, W.; Jin, Y.; Li, J.; Wu, W.; Jiang, H. Org. Lett. 2019, 21, 872.
[21]
(a) Suleman, M.; Li, Z.; Lu, P.; Wang, Y. Eur. J. Org. Chem. 2019, 27, 4447.
[21]
(b) Tang, Z.; Zhou, Y.; Song, Q. Org. Lett. 2019, 21, 5273.
[21]
(c) Zhou, B.; Dong, J.; Xu, J. Adv. Synth. Catal. 2019, 361, 4540.
[21]
(d) Clare, D.; Dobson, B. C.; Inglesby, P. A.; A?ssa, C. Angew. Chem., Int. Ed. 2019, 58, 16198.
[22]
(a) Mangion, I. K.; Nwamba, I. K.; Shevlin, M.; Huffman, M. A. Org. Lett. 2009, 11, 3566.
[22]
(b) Mangion, I. K.; Weisel, M. Tetrahedron Lett. 2010, 51, 5490.
[22]
(c) Dias, R. M. P.; Burtoloso, A. C. B. Org. Lett. 2016, 18, 3034.
[22]
(d) Li, J.; He, H.; Huang, M.; Chen, Y.; Luo, Y.; Yan, K.; Wang, Q.; Wu, Y. Org. Lett. 2019, 21, 9005.
[22]
(e) Yuan, Y.; Wu, X.-F. Synlett 2019, 30, 1820.
[22]
(f) Momo, P. B.; Leveille, A. N.; Farrar, E. H. E.; Grayson, M. N.; Mattson, A. E.; Burtoloso, A. C. B. Angew. Chem., Int. Ed. 2020, 59, 15554.
[22]
(g) Zhang, X.; Zhang, Y.; Liang, C.; Jiang, J. Org. Biomol. Chem. 2021, 19, 5767.
[22]
(h) Liu, X.; Shao, Y.; Sun, J. Org. Lett. 2021, 23, 1038.
[22]
(i) Furniel, L. G.; Echemendía, R.; Burtoloso, A. C. B. Chem. Sci. 2021, 12, 7453.
[23]
(a) Wen, S.; Tian, Q.; Chen, Y.; Zhang, Y.; Cheng, G. Org. Lett. 2021, 23, 7407.
[23]
(b) Su, K.; Guo, X.; Zhu, L.; Liu, Y.; Lu, Y.; Chen, B. Org. Chem. Front. 2021, 8, 4177.
[23]
(c) Vaitla, J; Bayer, A.; Hopmann, K. H. Angew. Chem., Int. Ed. 2018, 57,16180.
[24]
(a) Vaitla, J.; Bayer, A.; Hopmann, K. H. Angew. Chem., Int. Ed. 2017, 56, 4277.
[24]
(b) Lv, N.; Chen, Z.; Liu, Z.; Zhang, Y. J. Org. Chem. 2019, 84, 13013.
[24]
(c) Xie, W.; Chen, X.; Shi, J.; Li, J.; Liu, R. Org. Chem. Front. 2019, 6, 2662.
[24]
(d) Li, H.; Lu, Y.; Jin, X.; Sun, S.; Duan, L.; Liu, J. RSC Adv. 2020, 10, 38708.
[24]
(e) Wu, C.; Zhou, J.; He, G.; Li, H.; Yang, Q.; Wang, R.; Zhou, Y; Liu, H. Org. Chem. Front. 2019, 6, 1183.
[24]
(f) Lai, R.; Wu, X.; Lv, S.; Zhang, C.; He, M.; Chen, Y.; Wang, Q.; Hai, L.; Wu, Y. Chem. Commun. 2019, 55, 4039.
[24]
(g) Wu, Y.; Pi, C.; Cui, X.; Wu, Y. Org. Lett. 2020, 22, 361.
[25]
(a) Chen, P.; Nan, J.; Hu, Y.; Ma, Q.; Ma, Y. Org. Lett. 2019, 21, 4812.
[25]
(b) Liu, L.; Lin, J.; Pang, M; Jin, H.; Yu, X.; Wang, S. Org. Lett. 2022, 24, 1146.
[25]
(c) Zhu, S.; Shi, K.; Zhu, H.; Jia, Z.; Xia, X.; Wang, D.; Zou, L. Org. Lett. 2020, 22, 1504.
[25]
(d) Liang, Y.; Yang, M.; He, B.; Zhao, Y. Org. Lett. 2020, 22, 7640.
[25]
(e) Hong, C.; Yu, S.; Liu, Z.; Zhang, Y. RSC Adv. 2021, 11, 11490.
[25]
(f) Shi, X.; Wang, R.; Zeng, X.; Zhang, Y.; Hu, H.; Xie, C.; Wang, M. Adv. Synth. Catal. 2018, 360, 4049.
[26]
(a) Wang, X.; Song, J.; Zhong, M.; Kang, H.; Xie, H.; Che, T.; Shu, B.; Peng, D.; Zhang, L.; Zhang, S. Eur. J. Org. Chem. 2020, 2020, 3635.
[26]
(b) Xu, Y.; Huang, X.; Lv, G.; Lai, R.; Lv, S.; Li, J.; Hai, L.; Wu, Y. Eur. J. Org. Chem. 2020, 4635.
[27]
(a) Tang, Z.; Zhou, Y.; Song, Q. Org. Lett. 2019, 21, 5273.
[27]
(b) Liu, R.; Shan, Q.; Gao, Y.; Loh, T.; Hu, X. Chin. Chem. Lett. 2021, 32, 1411.
[27]
(c) Luo, N.; Zhan, Z; Ban, Z.; Lu, G.; He, J.; Hu, F.; Huang, G. Adv. Synth. Catal. 2020, 362, 3126.
[27]
(d) Li, X.; Zhai, P.; Fang, Y.; Li, W.; Chang, H.; Gao, W. Org. Chem. Front. 2021, 8, 988.
[28]
(a) Chen, Y.; Lv, S.; Lai, R.; Xu, Y.; Huang, X.; Li, J.; Lv, G.; Wu, Y. Chin. Chem. Lett. 2021, 32, 2555.
[28]
(b) Aher, Y. N.; Pawar, A. B. Chem. Commun. 2021, 57, 7164.
[28]
(c) Xie, H.; Lan, J.; Gui, J.; Chen, F.; Jiang, H.; Zeng, W. Adv. Synth. Catal. 2018, 360, 3534.
[28]
(d) Yu, Y.; Xia, Z.; Wu, Q.; Liu, D.; Yu, L.; Xiao, Y.; Tan, Z.; Deng, W.; Zhu, G. Chin. Chem. Lett. 2021, 32, 1263.
[28]
(e) Liu, C.-F.; Liu, M.; Dong, L. J. Org. Chem. 2019, 84, 409.
[28]
(f) Prabhakar Ganesh, P. S. K.; Muthuraja, P.; Gopinath, P. Chem. Commun. 2022, 58, 4211.
[29]
Hu, S.; Han, X.; Xie, X.; Fang, F.; Wang, Y.; Saidahmatov, A.; Liu, H.; Wang, J. Adv. Synth. Catal. 2021, 363, 3311.
[30]
Matsumura, M.; Takada, R.; Ukai, Y.; Yamada, M.; Murata, Y.; Kakusawa, N.; Yasuike, S. Heterocycles 2016, 93, 75.
[31]
Su, Y.; Petersen, J. L.; Gregg, T. L.; Shi, X. Org. Lett. 2015, 17, 1208.
[32]
Jeganathan, M.; Dhakshinamoorthy, A.; Pitchumani, K. Tetrahedron Lett. 2014, 55, 1616.
[33]
Tan, J.; Tang, W.; Sun, Y.; Jiang, Z.; Chen, F.; Xu, L.; Fan, Q.; Xiao, J. Tetrahedron 2011, 67, 6206.
[34]
Kang, F.-A.; Sui, Z.; William, M. V. J. Am. Chem. Soc. 2008, 130, 11300.
[35]
Pu, J.; Liu, X.; Luo, X.; Zhan, Z.; Zhang, Y.; Huang, G. ChemistrySelect 2018, 3, 12219.
[36]
Jiang, J.; Song, S.; Guo, J.; Zhou, J.; Li, J. Tetrahedron Lett. 2022, 98, 153820.
[37]
Harsha, K. B.; Rangappa, S.; Preetham, H. D.; Swaroop, T. R.; Gilandoust, M.; Rakesh, K. S.; Rangappa, K. S. ChemistrySelect 2018, 3, 5228.
Outlines

/