Chinese Journal of Organic Chemistry >
Synthesis and in Vitro Antitumor Activity of Matrine Semicarbazide Derivatives
Received date: 2022-09-30
Revised date: 2022-12-11
Online published: 2023-01-12
Supported by
National Innovation and Entrepreneurship Training Program for College Students(202010601021); Guangxi Young and Middle-Aged Scientific Research Basic Ability Improvement Project for Colleges and Universities(2019KY051); Natural Science Foundation of Guangxi Province(2018GXNSFAA281200); Project for Science Research and Technology Development of Guilin City(20210227-1)
In order to search for novel antitumor drugs with high efficiency and low toxicity, matrine semicarbazide derivatives were designed and synthesized. The antiproliferative activities of target compounds in four human cancer cell lines of A549 (lung), HepG2 (liver), Hela (epithelial cervical), MGC-803 (gastric) and a human normal cell of L-O2 (liver) were evaluated by methyl thiazolyl tetrazolium (MTT) assay. Biological screening results demonstrated that most of the derivatives exhibited more potent cytotoxicity against tumor cell lines superior to parent compound matrine. Among them, compounds of 14-formyl-15-chloro-matrine N-(3-chlorophenyl) semicarbazide (6c) and 14-formyl-15-chloro-matrine N-(3-nitrophenyl) semicarbazide (6f) displayed better antiproliferative activity with IC50 values of (11.70±0.25) and (15.61±0.07) μmol/L toward A549 cells compared with camptothecin, and with IC50 values of (11.32±1.07) and (9.27±2.03) μmol/L against MGC-803 cells. Moreover, they exhibited lower cytotoxicity against human normal liver cell line L-O2. Flow cytometry and JC-1 mitochondrial membrane potential detection showed that compound 6f could induce apoptosis of MGC803 cells and reduce the mitochondrial membrane potential. It would provide a new idea for the structural modification of matrine.
Key words: matrine; semicarbazide; synthesis; in vitro antitumor activity
Panxing Pang , Rong Ning , Chuang Zhu , Wenjie Huang , Xianli Ma , Caina Jiang , Fangyao Li , Xiaoqun Zhou . Synthesis and in Vitro Antitumor Activity of Matrine Semicarbazide Derivatives[J]. Chinese Journal of Organic Chemistry, 2023 , 43(6) : 2126 -2135 . DOI: 10.6023/cjoc202209040
| [1] | Bray, F.; Laversanne, M.; Weiderpass, E.; Soerjomataram, I. Cancer 2021, 127, 3029. |
| [2] | Sung, H.; Ferlay, J.; Siegel, R. L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Ca-Cancer J. Clin. 2021, 71, 209. |
| [3] | Alam, O.; Mullick, P.; Verma, S. P.; Gilani, S. J.; Khan, S. A.; Siddiqui, N.; Ahsan, W. Eur. J. Med. Chem. 2010, 45, 2467. |
| [4] | Sriram, D.; Stables, P. J.; Thirumurugan, R.; Induja, S.; Ragavendran, V. J.; Yogeeswari, P. Med. Chem. 2006, 2, 55. |
| [5] | Yogeeswari, P.; Sriram, D.; Veena, V.; Kavya, R.; Rakhra, K.; Ragavendran, J. V.; Mehta, S.; Thirumurugan, R.; Stables, J. P. Biomed. Pharmacother. 2005, 59, 51. |
| [6] | Xu, H.; Su, X.; Liu, X.Q.; Zhang, K. P.; Hou, Z.; Guo, C. Bioorg. Med. Chem. Lett. 2019, 29, 23. |
| [7] | Hania, M. M. E-J. Chem. 2009, 6, 508. |
| [8] | Gopi, C.; Dhanaraju, D. M. Beni-Suef Univ. J. Basic Appl. Sci. 2018, 7, 291. |
| [9] | Chipeleme, A.; Gut, J.; Rosenthal, P. J.; Chibale, K. Bioorg. Med. Chem. 2007, 15, 273. |
| [10] | Queiroz, A. C.; Alves, M. A.; Barreiro, E. J.; Lima, L. M.; Alexandre-Moreira, M. S. Exp. Parasitol. 2019, 201, 57. |
| [11] | Qazi, S. U.; Naz, A.; Hameed, A.; Osra, F. A.; Jalil, S.; Iqbal, J.; Ali Shah, S. A.; Mirza, A. Z. Bioorg. Chem. 2021, 115, 105209. |
| [12] | Liu, Y.-B.; Peng, W.-L.; Yu, L.-J.; Xing, J.-H.; Chen, J.; Xia, X.-J.; Shen, D.-L. Agrochemicals 2010, 49, 407. (in Chinese) |
| [12] | (刘永榜, 彭伟立, 郁林军, 邢家华, 陈杰, 夏旭建, 沈德隆, 农药, 2010, 49, 407.) |
| [13] | Ma, J. J.; Hu, G.; Xie, L. J.; Chen, L.; Xu, B. X.; Gong, P. Chem. Res. Chin. Univ. 2015, 31, 958. |
| [14] | Jia, X. X.; Liu, Q.; Wang, S. Y.; Zeng, B. L.; Du, G. H.; Zhang, C.; Li, Y. Bioorg. Med. Chem. 2020, 28, 115557. |
| [15] | Afrasiabi, Z.; Sinn, E.; Lin, W. S.; Ma, Y. F.; Campana, C.; Padhye, S. J. Inorg. Biochem. 2005, 99, 1526. |
| [16] | Mishra, B. B.; Tiwari, V. K. Eur. J. Med. Chem., 2011, 46, 4769. |
| [17] | Mondal, S.; Bandyopadhyay, S.; Ghosh, M. K.; Mukhopadhyay, S.; Roy, S.; Mandal, C. Anti-Cancer Agents Med. Chem. 2012, 12, 49. |
| [18] | Newman, D. J.; Cragg, G. M.; Snader, K. M. J. Nat. Prod. 2003, 66, 1022. |
| [19] | Huang, J. L.; Xu, H. Curr. Top. Med. Chem. 2016, 16, 3365. |
| [20] | Pan, J. L.; Hao, X.; Yao, H. W.; Ge, K. K.; Ma, L.; Ma, W. J. For. Res. 2019, 30, 1105. |
| [21] | Sun, N.; Zhang, H.; Sun, P. P.; Khan, A.; Guo, J. H.; Zheng, X. Z.; Sun, Y. G.; Fan, K. H.; Yin, W.; Li, H. Q. Phytomedicine 2020, 77, 153289. |
| [22] | Zhang, B.; Liu, Z. Y.; Li, Y. Y.; Luo, Y.; Liu, M. L.; Dong, H. Y.; Wang, Y. X.; Liu, Y.; Zhao, P. T.; Jin, F. G.; Li, Z. C. Eur. J. Pharm. Sci. 2011, 44, 573. |
| [23] | Cheng, X. G.; He, H. Q.; Wang, W. X.; Dong, F. Y.; Zhang, H. H.; Ye, J. M.; Tan, C. C.; Wu, Y. H.; Lv, X. J.; Jiang, X. H.; Qin, X. J. Pest Manage. Sci. 2020, 76, 2711. |
| [24] | Zhou, S. K.; Zhang, R. L.; Xu, Y. F.; Bi, T. N. Molecules 2012, 17, 6481. |
| [25] | Chen, M. H.; Gu, Y. Y.; Zhang, A. L.; Sze Daniel, M. Y.; Mo, S. L.; May Brian, H. Pharmacol. Res. 2021,171. |
| [26] | Zhang, X.; Hou, G. Q.; Liu, A. D.; Xu, H.; Guan, Y.; Wu, Y. S.; Deng, J.; Cao, X. Cell Death Dis. 2019, 10, 10. |
| [27] | Liu, Z.-M.; Yang, X.-L.; Jiang, F.; Pan, Y.-C.; Zhang, L. J. Cell. Biochem. 2019, 121, 3. |
| [28] | Hu, J.; Wang, Y. Chin. Arch. Tradit. Chin. Med. 2021, 171. (in Chinese) |
| [28] | (胡锦丹, 王宇, 中华中医药学刊, 2021, 171.) |
| [29] | Dai, M.; Cai, Z.; Chen, N.; Li, J.; Wen, J.; Tan, L.; Guo, D. J. South. Med. Univ. 2019, 39, 1239. (in Chinese) |
| [29] | (戴美琴, 蔡茁, 陈娜娜, 李金州, 温嘉泳, 谭丽转, 郭丹, 南方医科大学学报, 2019, 39, 1239.) |
| [30] | Yang, J.; He, D.; Peng, Y.; Zhong, H.; Deng, Y.; Yu, Z.; Guan, C.; Zuo, Y.; Xu, Z. OncoTargets Ther. 2017, 10, 5209. |
| [31] | Fu, S.; Zhao, N.; Jing, G.; Yang, X.; Liu, J.; Zhen, D.; Tang, X. Biomed. Pharmacother. 2020, 128, 110327. |
| [32] | Li, Z.; Luo, M. Y.; Cai, B.; Wu, L. C.; Huang, M. T.; Rashid, H.; Jiang, J.; Wang, L. S. Bioorg. Med. Chem. Lett. 2018, 28, 677. |
| [33] | Wei, J.; Liang, Y.; Wu, L. Molecules 2021, 26, 417. |
| [34] | Sun, X.; Zhuo, X.-B.; Hu, Y.-P.; Zheng, X.; Zhao, Q.-J. Mol. Cell. Biochem. 2018, 449, 47. |
| [35] | Rashid, H.; Xu, Y.; Muhammad, Y.; Wang, L.; Jiang, J. Eur. J. Med. Chem. 2019, 161, 205. |
| [36] | Wang, M.; Huang, L.; Su, Y.; Xu, Y.-H.; Huang, L.-Y.; Zhou, X.-Q.; Li, F.-Y. Chemistry 2019, 82, 57. (in Chinese) |
| [36] | (王妙, 黄琳, 苏燕, 许英红, 黄铃月, 周小群, 李芳耀, 化学通报, 2019, 82, 57.) |
| [37] | Xin, M.; Pang, F.-H.; Huang, L.; Zhou, X.-Q.; Wang, M.-D.; Li, J.-L.; Li, F.-Y. Chin. J. Synth. Chem. 2020, 28, 483. (in Chinese) |
| [37] | (辛懋, 庞富华, 黄琳, 周小群, 王萌迪, 李金林, 李芳耀, 合成化学, 2020, 28, 483.) |
| [38] | Li, F.-Y.; Huang, L.; Li, Q.; Wang, X.; Ma, X. L.; Jiang, C. N.; Zhou, X. Q.; Duan, W. G.; Lei, F. H. Molecules 2019, 24, 4191. |
| [39] | Huang, L.; Huang, R.; Pang, F. H.; Li, A. K.; Huang, G. B.; Zhou, X. Q.; Li, Q.; Li, F. Y.; Ma, X. L. RSC Adv. 2020, 10, 18008. |
| [40] | Li, F. Y.; Huang, L.; Zhou, X. Q.; Li, Q.; Ma, X. L; Duan, W. G.; Wang, X. Chin. J. Org. Chem. 2020, 40, 2845. (in Chinese) |
| [40] | (李芳耀, 黄琳, 周小群, 李倩, 马献力, 段文贵, 王秀, 有机化学, 2020, 40, 2845.) |
| [41] | Zheng, W. L.; Ma, X. L.; Zhou, X. Q.; Li, F. Y.; Xin, M.; Jiang, C. N. Chem. Ind. For. Prod. 2019, 39, 41. (in Chinese) |
| [41] | (郑万里, 马献力, 周小群, 李芳耀, 辛懋, 蒋彩娜, 林产化学与工业, 2019, 39, 41.) |
| [42] | Wang, K.; Zheng, W. L; Jiang, C. N.; Zhou, X. Q.; Li, F. Y.; Xin, M.; Ma, X. L. Chem. Res. Appl. 2020, 32, 1377. (in Chinese) |
| [42] | (王珂, 郑万里, 蒋彩娜, 周小群, 李芳耀, 辛懋, 马献力, 化学研究与应用, 2020, 32, 1377.) |
| [43] | Huang, J. L.; Lv, M.; Xu, H. RSC Adv. 2017, 7, 15997. |
| [44] | Xu, H.; Su, X.; Liu, X. Q.; Zhang, K. P.; Hou, Z.; Guo, C. Bioorg. Med. Chem. Lett. 2019, 29, 126726. |
| [45] | Dai, B.; Ma, X.; Tang, Y.; Xu, L.; Guo, S.; Chen, X.; Lu, S.; Wang, G.; Liu, Y. Bioorg. Med. Chem. 2021, 29, 115891. |
| [46] | Ly, J. D.; Grubb, D. R.; Lawen, A. Apoptosis 2003, 8, 115. |
/
| 〈 |
|
〉 |