Research Progress of Transition Metal Catalyzed Synthesis of 1,3- Conjugated Diene Compounds from Alkenes and Alkynes

  • Guangli Xu ,
  • Jing Xu ,
  • Haidong Xu ,
  • Xiang Cui ,
  • Xingzhong Shu
Expand
  • a College of Chemistry & Chemical Engineering, Qinghai Normal University, Xining 810000
    b College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou 730000

Received date: 2022-10-17

  Revised date: 2022-11-29

  Online published: 2023-01-12

Supported by

National Natural Science Foundation of China(22071084); National Natural Science Foundation of China(22271127)

Abstract

1,3-Conjugated dienes are key structural units of many natural products and drugs. Conjugated alkenes also play a central role in organic synthesis and materials science due to their special chemical properties. At present, the synthesis of 1,3-conjugated diene is mainly achieved by transition metal catalysis, and researchers have constructed a series of 1,3-diene skeletons through this method, which enriches the structural diversity of conjugated diene compounds and extends the application range of diene compounds. The synthesis of 1,3-diene is reviewed by classification based on the different types of transition metal catalysts, and its development prospects are prospected.

Cite this article

Guangli Xu , Jing Xu , Haidong Xu , Xiang Cui , Xingzhong Shu . Research Progress of Transition Metal Catalyzed Synthesis of 1,3- Conjugated Diene Compounds from Alkenes and Alkynes[J]. Chinese Journal of Organic Chemistry, 2023 , 43(6) : 1899 -1933 . DOI: 10.6023/cjoc202210017

References

[1]
(a) álvarez, R.; Vaz, B.; Gronemeyer, H.; deLera, á. R. Chem. Rev. 2014, 114, 1.
[1]
(b) Zweig, J. E.; Kim, D. E.; Newhouse, T. R. Chem. Rev. 2017, 117, 11680.
[2]
(a) Grigalunas, M.; Ankner, T.; Norrby, P.-O.; Wiest, O.; Helquist, P. Org. Lett. 2014, 16, 3970.
[2]
(b) Huang, E.; Bunel, E.; Faul, M. F. Org. Lett. 2007, 9, 4343.
[3]
(a) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
[3]
(b) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
[3]
(c) Gillis, E. P.; Eastman, K. J.; Hill, M. D.; Donnelly, D. J.; Meanwell, N. A. J. Med. Chem. 2015, 58, 8315.
[3]
(d) Wang, J.; Sánchez-Roselló, M.; Ace?a, J. L.; Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.
[3]
(e) Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Ace?a, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. Chem. Rev. 2016, 116, 422.
[3]
(f) Hu, J.; Yang, Y.; Lou, Z.; Ni, C.; Hu, J. Chin. J. Chem. 2018, 36, 1202.
[4]
(a) Hedhli, A.; Baklouti, A. Tetrahedron Lett. 1995, 36, 4433.
[4]
(b) Sporn, M. B.; Dunlop, N. M.; Newton, D. L.; Henderson, W. R. Nature 1976, 263, 110.
[4]
(c) Zhu, Y.; Liu, R. S. H. Biochemistry 1993, 32, 10233.
[4]
(d) Chopra, D. P.; Wilkoff, W. J. Eur. J. Cancer. 1979, 15, 1417.
[4]
(e) Srisethnil, S. J. Med. Chem. 1979, 22, 1059.
[5]
(a) Ohmura, T.; Masuda, K.; Takase, I.; Suginome, M. J. Am. Chem. Soc. 2009, 131, 16624.
[5]
(b) Abbas, S. Y.; Zhao, P.; Overman, L. E. Org. Lett. 2018, 20, 868.
[6]
(a) Jiang, B.; Liang, Q. J.; Han, Y. Org. Lett. 2018, 20, 3215.
[6]
(b) Kischkewitz, M.; Gerleve, C.; Studer, A. Org. Lett. 2018, 20, 3666.
[6]
(c) Tripathi, C. B.; Mukherjee, S. Org. Lett., 2015, 17, 4424.
[6]
(d) Dada, R.; Wei, Z.; Gui, R. Angew. Chem., Int. Ed. 2018, 57, 3981.
[7]
(a) Yang, X. H.; Dong, V. M. J. Am. Chem. Soc. 2017, 139, 1774.
[7]
(b) Marcum, J. S.; Roberts, C. C.; Manan, R. S. J. Am. Chem. Soc. 2017, 139, 15580.
[7]
(c) Roberts, C. C.; Matías, D. M.; Goldfogel, M. J. J. Am. Chem. Soc. 2015, 137, 6488.
[8]
(a) Guillam, A.; Toupet, L.; Maddaluno, J. J. Org. Chem. 1998, 63, 5110.
[8]
(b) Gulías, M.; Durán, J.; López, F. J. Am. Chem. Soc. 2007, 129, 11026.
[8]
(c) Fujiwara, K.; Kurahashi, T.; Matsubara, S. Org. Lett. 2010, 12, 4548.
[8]
(d) Liu, L.; Kim, H.; Xie, Y. J. Am. Chem. Soc. 2017, 139, 13656.
[9]
(a) Barluenga, J.; Tomás, G. M.; Aznar, F. Adv. Synth. Catal. 2010, 352, 3235.
[9]
(b) Zhang, X. M.; Yang, J.; Zhuang, Q. B. ACS Catal. 2018, 8, 6094.
[9]
(c) Kreyenschmidt, F.; Koszinowsk, K. Chem.-Eur. J. 2018, 24, 1168.
[10]
(a) Lopez, S. J. A.; Lamberti, M.; Pappalardo, D. Macromolecules 2003, 36, 9260.
[10]
(b) Milione, S.; Cuomo, C.; Capacchione, C. Macromolecules 2007, 40, 5638.
[10]
(c) Luo, K.; Kim, S. J.; Cartwright, A. N. Macromolecules 2011, 44, 4665.
[10]
(d) Bonnet, F.; Jones, C. E.; Semlali, C. Dalton Trans. 2013, 42, 790.
[10]
(e) Kostjuk, S. V. RSC Adv. 2015, 5, 13125.
[11]
Zhang, J.; Lu, X.; Shen, C.; Xu, L.; Ding, L.; Zhong, G. Chem. Soc. Rev. 2021, 50, 3263
[12]
Walkowiak, J.; Szyling, J.; Franczyk, A.; Melen, R. L. Chem. Soc. Rev. 2022, 51, 869.
[13]
Maikhuri, V. K.; Maity, J.; Srivastavac, S.; Prasad, A. K. Org. Biomol. Chem. 2022, 20, 9522.
[14]
(a) Sun, C.; Potter, B.; James, P. J. Am. Chem. Soc. 2014, 136, 6534.
[14]
(b) Nowothnick, H.; Blum, J.; Schom?cker, R. Angew. Chem., Int. Ed. 2011, 50, 1918.
[15]
(a) Cheng, S.; Zhao, R.; Seferos, D. S. Acc. Chem. Res. 2021, 54, 4203.
[15]
(b) Jack, A.; William, T.; Darrow, M. R.; Brennan, C. A.; Leahy, A. R. Organometallics 2022, 41, 1769.
[16]
(a) Adenot, A.; Anthore-Dalion, L.; Nicolas, E.; Berthet, J.-C.; Thuéry, P. Chem.-Eur. J. 2021, 27, 18047.
[16]
(b) Zhang, X.; Zhang, F.; Li, X.; Lu, M.-Z.; Meng, X.; Huang, L.; Luo, H. Org. Lett. 2022, 24, 5029.
[17]
(a) Gnaim, S.; Gholap, S. P.; Ge, L.; Das, S.; Gutkin, S.; Green, O.; Baran, P. S. Angew. Chem., Int. Ed. 2022, 61, e202202187.
[17]
(b) Chen, X.-Q.; Lu, H.; Chen, C.-X.; Zeng, R.; Wang, D.-Y.; Shi, C.-Y. J. Org. Chem. 2022, 87, 2935.
[18]
(a) Shao, H.; Zhao, Y.; Wang, S.; Chen, R.; Wu, X. Org. Lett. 2022, 24, 6520.
[18]
(b) Wu, Y.; Wu, L.; Zhang, Z.-M.; Xu, B.; Liu, Y.; Zhang, J. Chem. Sci. 2022, 13, 2021.
[19]
Tellier, F. Bioorg. Med. Chem. Lett. 1991, 1, 635.
[20]
Jia, X.-G.; Guo, P.; Duan, J.; Shu, X.-Z. Chem. Sci. 2018, 9, 640.
[21]
Arcadi, A.; Cacchi, S.; Fabrizi, G.; Marinelli, F. Tetrahedron 1996, 52, 6983.
[22]
Arcadi, A.; Cacchi, S.; Fabrizi, G.; Marinelli, F.; Pace, P. Eur. J. Org. Chem. 1999, 1999, 3305.
[23]
Hansen, L. A.; Skrydstrup, T. Org. Lett. 2005, 7, 5585.
[24]
Hansen, A. L.; Ebran, J.-P.; Ahlquist, M.; Norrby, P.-O.; Skrydstrup, T. Angew. Chem., Int. Ed. 2006, 45, 3349.
[25]
Yamashita, M.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2010, 12, 592.
[26]
Hornillos, V.; Giannerini, M.; Vila, C.; Mastral, M. F.; Feringa, B. L. Chem. Sci. 2015, 6, 1394.
[27]
Paraja, M.; Barroso, R.; Valdes, C. Adv. Synth. Catal. 2017, 359, 1.
[28]
Zhang, X.; Larock, R. C. Org. Lett. 2003, 5, 2993.
[29]
Shao, L.-X.; Shi, M. Org. Biomol. Chem. 2005, 3, 1828.
[30]
Meanwell, N. A. J. Med. Chem. 2018, 61, 5822.
[31]
Zhao, Q.; Wang, J.; Besset, T.; Pannecoucke, X.; Bouillona, J.-P.; Poisson, T. Tetrahedron 2018, 74, 6033.
[32]
Hussain, N.; Tatina, M. B.; Mukherjeea, D. Org. Biomol. Chem. 2018, 16, 2666.
[33]
Zheng, C.; Wang, D.; Stahl, S. S. J. Am. Chem. Soc. 2012, 134, 16496.
[34]
McAlpine, N. J.; Wang, L.; Carrow, B. P. J. Am. Chem. Soc. 2018, 140, 13634.
[35]
Hu, T.-J.; Li, M.-Y.; Zhao, Q.; Feng, C.-G.; Lin, G.-Q. Angew. Chem., Int. Ed. 2018, 57, 5871.
[36]
Xue, Z.-J.; Li, M.-Y.; Zhu, B.-B.; He, Z.-T.; Feng, C.-G.; Lin, G.-Q. Adv. Synth. Catal. 2021, 363, 2089.
[37]
Lin, J.; Huang, Z.; Ma, J.; Xu, B.-H.; Zhou, Y.-G.; Yu, Z. J. Org. Chem. 2022, 87, 12019.
[38]
Potter, B.; Szymaniak, A. A.; Edelstein, E. K.; Morken, J. P. J. Am. Chem. Soc. 2014, 136, 17918.
[39]
Jin, L.; Zhang, P.; Li, Y.; Yu, X.; Shi, B.-F. J. Am. Chem. Soc. 2021, 143, 12335.
[40]
Dai, D.-T.; Yang, M.-W.; Chen, Z.-Y.; Wang, Z.-L.; Xu, Y.-H. Org. Lett. 2022, 24, 1979.
[41]
Shen, C.; Zhu, Y.; Shen, W.; Jin, S.; Zhong, G.; Luo, S.; Xu, L.; Zhong, L.; Zhang, J. Org. Chem. Front. 2022, 9, 2109.
[42]
Zhu, C.; Yang, B.; Jiang, T.; Backvall, J.-E. Angew. Chem., Int. Ed. 2015, 54, 9066.
[43]
Hampton, C. S.; Harmata, M. J. Org. Chem. 2016, 81, 4807.
[44]
Parisotto, S.; Palagi, L.; Prandi, C.; Deagostino, A. Chem.-Eur. J. 2018, 24, 5484.
[45]
Vine, L. E.; Schomaker, J. M. Chem.-Eur. J. 2022, 28, e202103507.
[46]
Nguyen, V. T.; Dang, H. T.; Pham, H. H.; Nguyen, V. D.; Hansen, C. F.; Arman, H. D.; Larionov, O. V. J. Am. Chem. Soc. 2018, 140, 8434.
[47]
Dang, H. T.; Nguyen, V. D.; Pham, H. H.; Arman, H. D.; Larionov, O. V. Tetrahedron 2019, 75, 3258.
[48]
Dang, H. T.; Nguyen, V. D.; Haug, G. C.; Vuong, N. T. H.; Arman, H. D.; Larionov, O. V. ACS Catal. 2021, 11, 1042.
[49]
Wu, X.-X.; Ye, H.; Dai, H.; Yang, B.; Wang, Y.; Chen, S.; Hu, L. Org. Chem. Front. 2020, 7, 2731.
[50]
Matos, J. L. M.; Suhelen, V.-C.; Gu, J.; Oguma, T.; Shenvi, R. A. J. Am. Chem. Soc. 2018, 140, 16976.
[51]
Zhou, P.; Jiang, H.; Huang, L.; Li, X. Chem. Commun. 2011, 47, 1003.
[52]
Awaheri, Y. A.; Kimber, M. C. Org. Lett. 2016, 18, 3502.
[53]
Liu, J.; Yang, J.; Baumann, W.; Jackstell, R.; Beller, M. Angew. Chem., Int. Ed., 2019, 58, 10378.
[54]
Gao, S.; Liu, H.; Yang, C.; Fu, Z.; Yao, H.; Lin, A. Org. Lett. 2017, 19, 4710.
[55]
Ping, Y.; Zhang, S.; Chang, T.; Wang, J. J. Org. Chem. 2019, 84, 8275.
[56]
Yu, H.; Yu, B.; Zhang, H.; Huang, H. Org. Lett. 2021, 23, 3891.
[57]
Jia, X.-G.; Guo, P.; Duan, J.; Shu, X.-Z. Chem. Sci. 2018, 9, 640.
[58]
Huang, Y.-K.; Zhang, W.-Z.; Zhang, K.; Wang, W.-L.; Lu, X.-B. Org. Chem. Front. 2021, 8, 941.
[59]
Wang, K.; Chen, S.; Zhang, H.; Xu, S.; Ye, F.; Zhang, Y.; Wang, J. Org. Biomol. Chem. 2016, 14, 3809.
[60]
Keerthana, M. S.; Jeganmohan, M. Chem. Commun. 2022, 58, 8814.
[61]
Kakiuchi, F.; Uetsuhara, T.; Tanaka, Y.; Chatani, N.; Murai, S. J. Mol. Catal. A: Chem. 2002, 182, 511.
[62]
Neisius, N. M.; Plietker, B. Angew. Chem., Int. Ed. 2009, 48, 5752.
[63]
Rohde, L. N.; Wild, J.; Diver, S. T. J. Org. Chem. 2021, 86, 1371.
[64]
Huang, F.; Huang, Z.; Liu, G.; Huang, Z. Org. Lett. 2022, 24, 5486.
[65]
Hu, X.-H.; Zhang, J.; Yang, X.-F.; Xu, Y.-H.; Loh, T.-P. J. Am. Chem. Soc. 2015, 137, 3169.
[66]
Fr?tczak, J. S.; Marciniec, B.; Hreczycho, G.; Kubicki, M.; Pawluc, P. Org. Lett. 2015, 17, 2366.
[67]
Korkis, S. E.; Burns, D. J.; Lam, H. W. J. Am. Chem. Soc. 2016, 138, 12252.
[68]
(a) Hedhli, A.; Baklouti, A. Tetrahedron Lett. 1995, 36, 4433.
[68]
(b) Zhu, Y.; Liu, R. S. H. Biochemistry 1993, 32, 10233.
[69]
Song, S.; Liu, H.; Wang, L.; Zhu, C.; Loh, T.-P.; Feng, C. Chin. J. Chem. 2019, 37, 1036.
[70]
Scaringi, S.; Mazet, C. ACS Catal. 2021, 11, 7970.
[71]
Russo, T. V. C.; Marcus, M. S. Eur. J. Org. Chem. 2021, 2021, 4174.
[72]
Hoshi, T.; Ota, E.; Inokuma, Y.; Yamaguchi, J. Org. Lett. 2019, 21, 10081.
[73]
Takagi, K.; Mimura, H.; Inokawa, S. Bull. Chem. Soc. Jpn. 1984, 57, 3517.
[74]
Vanderesse, R.; Fort, Y.; Becker, S.; Caubere, P. Tetrahedron Lett. 1986, 27, 3517.
[75]
Cannes, C.; Condon, S.; Durandetti, M.; Périchon, J.; Nédélec, J.-Y. J. Org. Chem. 2000, 65, 4575.
[76]
Cai, L. S.; Lu, S. Y.; Pike, V. W. Eur. J. Org. Chem. 2008, 2008, 2853.
[77]
Kawashima, T.; Ohashi, M.; Ogoshi, S. J. Am. Chem. Soc. 2017, 139, 49, 17795.
[78]
Ackerman1, L. K. G.; Lovell, M. M.; Weix, D. J. Nature 2015, 524, 454.
[79]
Olivares, A. M.; Weix, D. J. J. Am. Chem. Soc. 2018, 140, 2446.
[80]
Xu, G.-L.; Liu, C.-Y.; Pang, X.; Liu, X.-Y.; Shu, X.-Z. CCS Chem. 2021, 3, 1147.
[81]
Fiorito, D.; Folliet, S.; Liu, Y.; Mazet, C. ACS Catal. 2018, 8, 1392.
[82]
Poisson, P.-A.; Tran, G.; Besnard, C.; Mazet, C. ACS Catal. 2021, 11, 15041.
[83]
Chen, Y.; Zhu, K.; Huang, Q.; Lu, Y. Chem. Sci. 2021, 12, 13564.
[84]
Whitesides, G. M.; Casey, C. P.; Krieger, J. K. J. Am. Chem. Soc. 1971, 93, 1379.
[85]
Li, Y.; Wu, J.; Li, H.; Sun, Q.; Xiong, L.; Yin, G. Org. Chem. Front. 2021, 8, 628.
[86]
Hou, C.-J.; Schuppe, A. W.; Knippel, J. L.; Buchwald, S. L. Org. Lett. 2021, 23, 8816.
[87]
Sasaki, Y.; Horita, Y.; Zhong, C.; Sawamura, M.; Ito, H. Angew. Chem., Int. Ed. 2011, 50, 2778.
[88]
Jia, J.; Yuan, F.; Zhang, Z.; Song, X.; Hu, F.; Xia, Y. Org. Lett. 2022, 24, 1985.
[89]
Gali?anes, V.-N.; Mastral, M. F. ChemCatChem 2018, 10, 4817.
[90]
Xu, W.-Y.; Li, Y.-J.; Gong, T.-J.; Fu, Y. Org. Lett. 2022, 24, 5884.
[91]
Campbell, N. E.; Sammis, G. M. Angew. Chem., Int. Ed. 2014, 53, 6228.
[92]
Liu, Y.; Wang, L.; Deng, L. J. Am. Chem. Soc. 2016, 138, 1, 112.
[93]
Liu, Q.; Wang, Z.-Y.; Peng, X.-S.; Wong, H. N. C. J. Org. Chem. 2018, 83, 6325.
[94]
Cao, X.; Huang, F.; Zhang, S. Synlett 2019, 30, 1437.
[95]
Molina, E. R.; Nievas, M. M.; Navarro, J. A. R.; Oltra, J. E. Chem.-Eur. J. 2020, 26, 8296.
[96]
Huang, Q.; Hu, M.-Y.; Zhu, S.-F. Org. Lett. 2019, 21, 7883.
[96]
Xu, Q.; Zheng, B.; Zhou, X.; Pan, L.; Liu, Q.; Li, Y. Org. Lett. 2020, 22, 1692.
Outlines

/