REVIEWS

Recent Progress in the C—S Bond Formation Reactions Mediated by Visible Light

  • Min Wu ,
  • Bo Liu ,
  • Jialong Yuan ,
  • Qiang Fu ,
  • Rui Wang ,
  • Dawei Lou ,
  • Fushun Liang
Expand
  • aInstitute of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022
    bSchool of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022
    cCollege of Chemistry, Liaoning University, Shenyang 110036

Received date: 2023-01-07

  Revised date: 2023-02-20

  Online published: 2023-03-31

Supported by

Science and Technology Research Project of Jilin Institute of Chemical Technology(2020021); Major Scientific and Technological Projects of Jilin Institute of Chemical Technology(2020010); Doctoral Start-up Foundation of Jilin Institute of Chemical Technology(2021016); Liaoning Revitalization Talents Program(XLYC1902111); Key Projects of Department of Education of Liaoning Province(LZD202005); Research and Development Project for Industrial Technology of Jilin Province(2020C028-1); Science and Technology Development of Jilin Province(202002008JC)

Abstract

The construction of C—S bond is of great significance in organic synthesis, in viewing that organic compounds containing C—S bonds are widely present in various natural products, drugs and functional materials. At present, transition metal-catalyzed C—S bond formation reactions have been well developed. However, in recent years, the visible-light-mediated C—S bond formation reactions have received more and more attention due to the characteristics of milder conditions, greener and higher reactivity. According to the classification of the reaction mechanisms, the methods of C—S bond construction based on photo-mediated redox catalysis, electron donor-acceptor complexes and energy transfer are summarized and a future perspective is made.

Cite this article

Min Wu , Bo Liu , Jialong Yuan , Qiang Fu , Rui Wang , Dawei Lou , Fushun Liang . Recent Progress in the C—S Bond Formation Reactions Mediated by Visible Light[J]. Chinese Journal of Organic Chemistry, 2023 , 43(7) : 2269 -2292 . DOI: 10.6023/cjoc202301006

References

[1]
Ciamician, G. Science 1912, 36, 385.
[2]
(a) Zhu, H.-Z.; Dronamraju, V.; Xie, W.; More, S. S. Med. Chem. Res. 2021, 30, 305.
[2]
(b) Wang, N.-Z.; Saidhareddy, P.; Jiang, X.-F. Nat. Prod. Rep. 2020, 37, 246.
[2]
(c) Nicastro, H. L.; Ross, S. A.; Milner, J. A. Cancer Prev. Res. 2015, 8, 181.
[2]
(d) Jacob, C. Nat. Prod. Rep. 2006, 23, 851.
[3]
(a) Feng, M.-H.; Tang, B.-Q.; Liang, S. H.; Jiang, X.-F. Curr. Top. Med. Chem. 2016, 16, 1200.
[3]
(b) Mustafa, M.; Winum, J. Y. Expert Opin. Drug Discovery 2022, 17, 501.
[4]
(a) Boyd, D. A. Angew. Chem., Int. Ed. 2016, 55, 15486.
[4]
(b) Rahate, A. S.; Nemade, K. R.; Waghuley, S. A. Rev. Chem. Eng. 2013, 29, 471.
[5]
(a) Su, Y.; Zhou, X.-J.; He, C.-L.; Zhang, W.; Ling, X.; Xiao, X. J. Org. Chem. 2016, 81, 4981.
[5]
(b) Yang, Y.; Zhang, S.; Tang, L.; Hu, Y.-B.; Zha, Z.-G.; Wang, Z. Green Chem. 2016, 18, 2609.
[5]
(c) Yu, J.-Q.; Ding, K.-L. Acta Chim. Sinica 2015, 73, 1223 (in Chinese).
[5]
(余金权, 丁奎岭, 化学学报, 2015, 73, 1223.)
[5]
(d) Sun, F.-L.; Liu, X.-M.; Chen, X.-Z.; Qian, C.; Ge, X. Chin. J. Org. Chem. 2017, 37, 2211 (in Chinese).
[5]
(孙丰莉, 刘学民, 陈新志, 钱超, 葛新, 有机化学, 2017, 37, 2211.)
[6]
(a) Varun, B. V.; Prabhu, K. R. J. Org. Chem. 2014, 79, 9655.
[6]
(b) Hostier, T.; Ferey, V.; Ricci, G.; Gomez Pardo, D.; Cossy, J. Chem. Commun. 2015, 51, 13898.
[7]
(a) Carril, M.; SanMartin, R.; Dominguez, E.; Tellitu, I. Chem.-Eur. J. 2007, 13, 5100.
[7]
(b) Kabir, M. S.; Linn, M. L. V.; Monte, A.; Cook, J. M. Org. Lett. 2008, 10, 3363.
[7]
(c) Zhu, W.; Ma, D.-W. J. Org. Chem. 2004, 70, 2696.
[8]
(a) Ranjit, S.; Duan, Z.; Zhang, P.; Liu, X. Org. Lett. 2010, 12, 4134.
[8]
(b) Nilsson, M.; Kulonen, E.; Sunner, S.; Frank, V.; Brunvoll, J.; Bunnenberg, E.; Djerassi, C.; Records, R. Acta Chem. Scand. 1966, 20, 423.
[8]
(c) Suzuki, H.; Abe, H. Tetrahedron Lett. 1995, 36, 6239.
[8]
(d) Qin, Y.-C.; Peng, Q. Chin. J. Org. Chem. 2011, 31, 1169 (in Chinese).
[8]
(秦元成, 彭强, 有机化学, 2011, 31, 1169.)
[9]
Wang, H.-B.; Wang, L.; Shang, J.-S.; Li, X.; Wang, H.-Y.; Gui, J.; Lei, A.-W. Chem. Commun. 2012, 48, 76.
[10]
Wang, P.-F.; Wang, X.-Q.; Dai, J.-J.; Feng, Y.-S.; Xu, H.-J. Org. Lett. 2014, 16, 4586.
[11]
Lan, M.-T.; Wu, W.-Y.; Huang, S.-H.; Luo, K.-L.; Tsai, F.-Y. RSC Adv. 2011, 1,1151.
[12]
Liu, T.-J.; Yi, C.-L.; Chan, C.-C.; Lee, C.-F. Chem.-Asian J. 2013, 8, 1029.
[13]
(a) Zhu, J.-Y.; Chen, Y.; Lin, F.; Wang, B.-S.; Chen, Z.-W.; Liu, L.-X. Org. Biomol. Chem. 2015, 13, 3711.
[13]
(b) Brigham, C. E.; Malapit, C. A.; Lalloo, N.; Sanford, M. S. ACS Catal. 2020, 10, 8315.
[14]
Tavares Junior, J.; da Silva, C. D. G.; Dos Santos, B. F.; Souza, N. S.; Oliveira, A. R. D.; Kupfer, V. L.; Rinaldi, A. W.; Domingues, N. L. C. Org. Biomol. Chem. 2019, 17, 10103.
[15]
Reddy, V. P.; Swapna, K.; Kumar, A. V.; Rao, K. R. J. Org. Chem. 2008, 74, 3189.
[16]
Timpa, S. D.; Pell, C. J.; Ozerov, O. V. J. Am. Chem. Soc. 2014, 136, 14772.
[17]
(a) Shang, R.; Liu, L. Sci. China: Chem. 2011, 54, 1670.
[17]
(b) Ganley, J. M.; Yeung, C. S. J. Org. Chem. 2017, 82, 13557.
[17]
(c) Becht, J. M.; Le Drian, C. J. Org. Chem. 2011, 76, 6327.
[18]
(a) Wimmer, A.; Konig, B. Beilstein J. Org. Chem. 2018, 14, 54.
[18]
(b) Gao, J.; Feng, J.; Du, D. Chem.-Asian. J. 2020, 15, 3637.
[19]
(a) Schultz, D. M.; Yoon, T. P. Science 2014, 343, 1.
[19]
(b) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. Chem. Rev. 2013, 113, 5322.
[19]
(c) Narayanam, J. M.; Stephenson, C. R. Chem. Soc. Rev. 2011, 40, 102.
[19]
(d) Chen, J.-R.; Yan, D.-M.; Wei, Q.; Xiao, W.-J. ChemPhotoChem 2017, 1, 148.
[19]
(e) Xue, D.; Song, G.-Y. Chin. J. Org. Chem. 2022, 42, 2275 (in Chinese).
[19]
(宋戈洋, 薛东, 有机化学, 2022, 42, 2275.)
[20]
Yan, D.-M.; Chen, J.-R.; Xiao, W.-J. Angew. Chem., Int. Ed. 2019, 58, 378.
[21]
Chen, M.; Huang, Z.-T.; Zheng, Q.-Y. Chem. Commun. 2012, 48, 11686.
[22]
Penteado, F.; Gomes, C. S.; Monzon, L. I.; Perin, G.; Silveira, C. C.; Lenard?o, E. J. Eur. J. Org. Chem. 2020, 2020, 2110.
[23]
Tyson, E. L.; Ament, M. S.; Yoon, T. P. J. Org. Chem. 2013, 78, 2046.
[24]
Zhao, G.-Y.; Kaur, S.; Wang, T. Org. Lett. 2017, 19, 3291.
[25]
Wang, J.-L.; Huang, B.-B.; Yang, C.; Xia, W.-J. Chem. Commun. 2019, 55, 11103.
[26]
Wang, X.; Cuny, G. D.; Noel, T. Angew. Chem., Int. Ed. 2013, 52, 7860
[27]
Jiang, M.; Li, H.-F.; Yang, H.-J.; Fu, H. Angew. Chem., Int. Ed. 2017, 56, 874
[28]
Li, J.; Bao, W.-H.; Zhang, Y.; Rao, Y.-J. Eur. J. Org. Chem. 2019, 2019, 7175.
[29]
Zubkov, M. O.; Kosobokov, M. D.; Levin, V. V.; Dilman, A. D. Org. Lett. 2022, 24, 2354.
[30]
Jeremy, D. G.; Mary, A. Z.; Nicewicz, D. A. J. Am. Chem. Soc. 2015, 137, 11340.
[31]
Jiang, H.; Chen, X.-J.; Zhang, Y.; Yu, S.-Y. Adv. Synth. Catal. 2013, 355, 809.
[32]
Meyer, A. U.; J?ger, S.; Hari, D. P.; K?nig, B. Adv. Synth. Catal. 2015, 357, 2050.
[33]
Kumar, J.; Ahmad, A.; Rizvi, M. A.; Ganie, M. A.; Khajuria, C.; Shah, B. A. Org. Lett. 2020, 22, 5661.
[34]
Liang, G.; Wang, J.-H.; Lei, A.; Cheng, Y.-Y.; Zhou, C.; Chen, Y.-J.; Ye, C.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Org. Lett. 2021, 23, 8082.
[35]
Rahaman, R.; Hoque, M. T.; Maiti, D. K. Org. Lett. 2022, 24, 6885.
[36]
Wang, P.; Zhang, H.; Nie, X.; Xu, T.; Liao, S.-H. Nat. Commun. 2022, 13, 3370.
[37]
Nie, X.-L.; Xu, T.-X.; Song, J.-S.; Devaraj, A.; Zhang, B.-L.; Chen, Y.; Liao, S.-H. Angew. Chem., Int. Ed. 2021, 60, 3956.
[38]
Yadav, A. K.; Yadav, L. D. S. Tetrahedron Lett. 2015, 56, 6696.
[39]
Tan, W.; Wang, C.-H.; Jiang, X.-F. Chin. J. Chem. 2019, 37, 1234.
[40]
Chen, Z.-R.; Jin, W.-W.; Xia, Y.; Zhang, Y.-H.; Xie, M.-W.; Ma, S.-C.; Liu, C.-J. Org. Lett. 2020, 22, 8261.
[41]
Ghosh, K. G.; Das, D.; Garai, S.; Chandu, P.; Sureshkumar, D. J. Org. Chem. 2022, 87, 8611.
[42]
(a) Mulliken, R. S. J. Phys. Chem. 1952, 56, 801.
[42]
(b) Esrafili, M. D. J. Mol. Model. 2013, 19, 1417.
[42]
(c) Mulliken, R. S. J. Am. Chem. Soc. 1950, 72, 600.
[43]
(a) Andrews, L. J. Chem. Rev. 1954, 54, 713.
[43]
(b) Foster, R. J. Phys. Chem. 1980, 84, 2135.
[44]
Fox, M.; Younathan, J. N.; Fryxell, G. J. Org. Chem. 1983, 15, 3109.
[45]
Sankararaman, S.; Haney, W. A.; Kochi, J. K. J. Am. Chem. Soc. 1987, 109, 7824.
[46]
(a) Crisenza, G. E. M.; Mazzarella, D.; Melchiorre, P. J. Am. Chem. Soc. 2020, 142, 5461.
[46]
(b) Kale, M. J.; Avanesian, T.; Christopher, P. ACS Catal. 2013, 4, 116.
[47]
Rosokha, S. V.; Kochi, J. K. Acc. Chem. Res. 2008, 41, 641.
[48]
Liu, B.; Lim, C.-H.; Miyake, G. M. J. Am. Chem. Soc. 2017, 139, 13616.
[49]
Uchikura, T.; Hara, Y.; Tsubono, K.; Akiyama, T. ACS Org. Inorg. Au 2021, 1, 23.
[50]
Li, Y.; Miao, T.; Li, P.; Wang, L. Org. Lett. 2018, 20, 1735.
[51]
Ho, H. E.; Pagano, A.; Rossi-Ashton, J. A.; Donald, J. R.; Epton, R. G.; Churchill, J. C.; James, M. J.; O'Brien, P.; Taylor, R. J. K.; Unsworth, W. P. Chem. Sci. 2019, 11, 1353.
[52]
Yang, M.-C.; Cao, T.-P.; Xu, T.-X.; Liao, S.-H. Org. Lett. 2019, 21, 8673.
[53]
Li, Y.; Ma, F.; Li, P.-H.; Miao, T.; Wang, L. Adv. Synth. Catal. 2019, 361, 1606.
[54]
Cai, Y.; Nie, F.-Y.; Song, Q.-H. J. Org. Chem. 2021, 86, 12419.
[55]
Sundaravelu, N.; Nandy, A.; Sekar, G. Org. Lett. 2021, 23, 3115.
[56]
Liang, X.; Li, Y.-F.; Xia, Q.; Cheng, L.; Guo, J.-B.; Zhang, P.; Zhang, W.-H.; Wang, Q.-M. Green Chem. 2021, 23, 8865.
[57]
Chen, Z.-R.; Xue, F.; Liu, T.-X.; Wang, B.; Zhang, Y.-H.; Jin, W.-W.; Xia, Y.; Liu, C.-J. Green Chem. 2022, 24, 3250.
[58]
Chen, Z.-R.; Xue, F.; Zhang, Y.-H.; Jin, W.-W.; Wang, B.; Xia, Y.; Xie, M.-W.; Abdukader, A.; Liu, C.-J. Org. Lett. 2022, 24, 3149.
[59]
Wu, Q.; Zhao, Y.-H.; Chai, L.-L.; Li, H.-Y.; Li, H.-X. Org. Chem. Front. 2022, 9, 2977.
[60]
Xie, W.-J.; Ma, P.-J.; Zhang, Y.-J.; Xi, L.-Y.; Qiu, S.-Q.; Huang, X.; Yang, B.; Gao, Y.; Zhang, J.-M. Org. Lett. 2022, 24, 6099.
[61]
Granados, A.; Cabrera-Afonso, M. J.; Escolano, M.; Badir, S. O.; Molander, G. A. Chem. Catal. 2022, 2, 898.
[62]
Zhang, Y.; Xia, S.-D.; Shi, W.-X.; Lin, B.-Z.; Su, X.-C.; Lu, W.-W.; Wu, X.-Y.; Wang, X.; Lu, X.-J.; Yan, M.; Zhang, X.-J. Org. Lett. 2022, 24, 7961.
[63]
Cabrera-Afonso, M. J.; Granados, A.; Molander, G. A. Angew Chem., Int. Ed. 2022, 61, 1.
[64]
(a) Skourtis, S. S.; Liu, C.; Antoniou, P.; Virshup, A. M.; Beratan, D. N. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 8115.
[64]
(b) Scholes, G. D. Annu. Rev. Phys. Chem. 2003, 54, 57.
[64]
(c) Scandola, F.; Indelli, M. T.; Chiorboli, C.; Bignozzi, C. A. Top. Curr. Chem. 1990, 158, 75.
[65]
(a) Garcia-Parajo, M. F.; Hernando, J.; Sanchez Mosteiro, G.; Hoogenboom, J. P.; van Dijk, E. M.; van Hulst, N. F. ChemPhys- Chem 2005, 6, 819.
[65]
(b) Porter, G. B. Adv. Photochem. 1974, 9, 148.
[66]
Grosskopf, J.; Kratz, T.; Rigotti, T.; Bach, T. Chem. Rev. 2022, 122, 1626.
[67]
Xiao, W.-J.; Zhou, Q.-Q.; Zou, Y.-Q.; Lu, L.-Q. Angew. Chem., Int. Ed. 2018, 58, 1586.
[68]
Marzo, L.; Pagire, S. K.; Reiser, O.; Konig, B. Angew. Chem., Int. Ed. 2018, 57, 10034.
[69]
Zhu, S.; Pathigoolla, A.; Lowe, G.; Walsh, D. A.; Cooper, M.; Lewis, W.; Lam, H. W. Chem.-Eur. J. 2017, 23, 17598.
[70]
Li, Y.-M.; Wang, M.; Jiang, X.-F. ACS Catal. 2017, 7, 7587.
[71]
Teders, M.; Henkel, C.; Anhauser, L.; Strieth-Kalthoff, F.; Gomez- Suarez, A.; Kleinmans, R.; Kahnt, A.; Rentmeister, A.; Guldi, D.; Glorius, F. Nat. Chem. 2018, 10, 981.
[72]
Escobar, R. A.; Johannes, J. W. Chem.-Eur. J. 2020, 26, 5168.
[73]
Gadde, K.; Mampuys, P.; Guidetti, A.; Ching, H. Y. V.; Herrebout, W. A.; Van Doorslaer, S.; Abbaspour Tehrani, K.; Maes, B. U. W. ACS Catal. 2020, 10, 8765.
[74]
(a) Gravatt, C. S.; Johannes, J. W.; King, E. R.; Ghosh, A. J. Org. Chem. 2022, 87, 8921.
[74]
(b) Huang, S.; Wang, M.; Jiang, X.-F. Chem. Soc. Rev. 2022, 51, 8351.
[75]
Xu, T.-X.; Cao, T.-P.; Yang, M.-C.; Xu, R.-T.; Nie, X.-L.; Liao, S.-H. Org. Lett. 2020, 22, 3692.
[76]
(a) Li, H.-Y.; Cheng, Z.-R.; Tung, C.-H.; Xu, Z.-H. ACS Catal. 2018, 8, 8237.
[76]
(b) Song, T.-T.; Li, H.-Y.; Wei, F.; Tung, C.-H.; Xu, Z.-H. Tetrahedron Lett. 2019, 60, 916.
[77]
Jouffroy, M.; Kelly, C. B.; Molander, G. A. Org. Lett. 2016, 18, 876.
[78]
Oderinde, M. S.; Frenette, M.; Robbins, D. W.; Aquila, B.; Johannes, J. W. J. Am. Chem. Soc. 2016, 138, 1760.
[79]
Santandrea, J.; Minozzi, C.; Cruche, C.; Collins, S. K. Angew. Chem., Int. Ed. 2017, 56, 12255.
[80]
Zhong, S.; Zhou, Z.-W.; Zhao, F.; Mao, G.-J.; Deng, G. J.; Huang, H.-W. Org. Lett. 2022, 24, 1865.
[81]
Du, H.-W.; Liu, M.-S.; Shu, W. Org. Lett. 2022, 24, 5519.
[82]
Wei, L.-D.; Wu, C.-J.; Tung, C.-H.; Wang, W.-G.; Xu, Z.-H. Org. Chem. Front. 2019, 6, 3224.
[83]
Fagnoni, M.; Dondi, D.; Ravelli, D.; Albini, A. Chem. Rev. 2007, 107, 2725.
[84]
Blanka, L.; Fagnoni, M.; Protti, S.; Rueping, M. Synthesis 2019, 51, 1243.
[85]
Wang, H.; Wu, Q.; Zhang, J.-D.; Li, H.-Y.; Li, H.-X. Org. Lett. 2021, 23, 2078.
Outlines

/