Synthesis of 3-Trifluoromethylpyrazole Derivatives

  • Hu Ma ,
  • Danfeng Huang ,
  • Kehu Wang ,
  • Duoduo Tang ,
  • Yang Feng ,
  • Yuanyuan Reng ,
  • Junjiao Wang ,
  • Yulai Hu
Expand
  • College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070

Received date: 2023-02-23

  Revised date: 2023-05-07

  Online published: 2023-05-25

Supported by

National Natural Science Foundation of China(22061037); National Natural Science Foundation of China(21861033); Shanghai Sinofluoro Chemicals Co., Ltd.

Abstract

The [3+2] cycloaddition reactions of trifluoroacetohydrazonoyl bromides with ynones, alkynoates and aynamides have been developed, and a series of 3-trifluoromethylpyrazole derivatives were obtained in medium to excellent yields. The noble features of this protocol include excellent regioselectivity, good functional group tolerance, mild reaction conditions and simple operation. It provides an efficient and practical method for the synthesis of 3-trifluoromethylpyrazoles.

Cite this article

Hu Ma , Danfeng Huang , Kehu Wang , Duoduo Tang , Yang Feng , Yuanyuan Reng , Junjiao Wang , Yulai Hu . Synthesis of 3-Trifluoromethylpyrazole Derivatives[J]. Chinese Journal of Organic Chemistry, 2023 , 43(9) : 3257 -3267 . DOI: 10.6023/cjoc202302026

References

[1]
Fustero S.; Simón-Fuentes A.; Delgado O.; Román R. Fluorinated Pyrazoles and Indazoles. In Fluorine in Heterocyclic Chemistry, Vol. 1, Ed: Nenajdenko, V., Springer, Cham, 2014.
[2]
Mykhailiuk P. K. Chem. Rev. 2021, 121, 1670.
[3]
Zeng J.; Xu Z; Ma J.-A. Chin. J. Org. Chem. 2020, 40, 1105 (in Chinese.)
[3]
(曾俊良, 许志红, 马军安, 有机化学, 2020, 40, 1105.)
[4]
Penning T. D.; Talley J. J.; Bertenshaw S. R.; Carter J. S.; Collins P. W.; Docter S.; Graneto M. J.; Lee L. F.; Malecha J. W.; Miyashiro J.M.; Rogers R. S.; Rogier D. J.; Yu, Stella S.; Anderson, Gary D.; Burton, E. G.; Cogburn, J. N.; Gregory, S. A.; Koboldt, C. M.; Perkins, W.E.; Seibert, K.; Veenhuizen, A. W.; Zhang, Y. Y.; Isakson, P. C. J. Med. Chem. 1997, 40, 1347.
[5]
Varnes J. G.; Wacker D. A.; Pinto D. J. P.; Orwat M. J.; Theroff J. P.; Wells B.; Galemo R. A.; Luettgen J. M.; Knabb R. M.; Bai S.; He K.; Lam P. Y. S.; Wexler R. R. Bioorg. Med. Chem. Lett. 2008, 18, 749.
[6]
Duan S.; Venkatraman S.; Hong X.-C.; Huang K.; Ulysse L.; Mobele B. I.; Smith A.; Lawless L.; Locke A.; Garigipati R. Org. Process Res. Dev. 2012, 16, 1787.
[7]
Link J. O.; Rhee M. S.; Tse W. C.; Zheng J.; Somoza J. R.; Rowe W.; Begley R.; Chiu A.; Mulato A.; Hansen D.; Singer E.; Tsai L. K.; Bam R. A.; Chou C.; Canales E.; Brizgys G.; Zhang J. R.; Li J.; Graupe M.; Morganelli P.; Liu Q.; Wu Q.; Halcomb R. L.; Saito R. D.; Schroeder S. D.; Lazerwith S. E.; Bondy S.; Jin D.; Hung M.; Novikov N.; Liu X.; Villase?or A. G.; Cannizzaro C. E.; Hu E. Y.; Anderson R. L.; Appleby T. C.; Lu B.; Mwangi J.; Liclican A.; Niedziela-Majka A.; Papalia G. A.; Wong M. H.; Leavitt S. A.; Xu Y.; Koditek D.; Stepan G. J.; Yu H.; Pagratis N.; Clancy S.; Ahmadyar S.; Cai T. Z.; Sellers S.; Wolckenhauer S. A.; Ling J.; Callebaut C.; Margot N.; Ram R. R.; Liu Y.; Hyland R.; Sinclair G. I.; Ruane P. J.; Crofoot G. E.; McDonald C. K.; Brainard D. M.; Lad L.; Swaminathan S.; Sundquist W. I.; Sakowicz R.; Chester A. E.; Lee W. E.; Daar E. S.; Yant S. R.; Cihlar T. Nature 2020, 584, 614.
[8]
Avenot H. F.; Thomas A.; Gitaitis R. D.; Langston Jr D. B.; Stevenson K. L. Pest. Manage. Sci. 2012, 68, 645.
[9]
Tanetani Y.; Kaku K.; Kawai K.; Fujioka T.; Shimizu T. Pestic. Biochem. Phys. 2009, 95, 47.
[10]
(a) Gnanasekaran P.; Yuan Y.; Lee C.; Zhou X.; Jen A. K. Y.; Chi Y. Inorg. Chem. 2019, 58, 10944.
[10]
(b) Yuan Y.; Gnanasekaran P.; Chen Y.; Lee G.; Ni S.; Lee C.-S.; Chi Y. Inorg. Chem. 2020, 59, 523.
[10]
(c) Liao J.; Chi Y.; Wang J.; Chen Z.; Tsai Z.; Hung W; Tseng M.-R.; Lee G. Inorg. Chem. 2016, 55, 6394.
[10]
(d) Guo B.; Yu T.; Li H.; Zhang S.; Braunstein P.; Young D. J.; Li H.; Lang J. ChemCatChem 2019, 11, 2500.
[11]
Recent work: (a) Pianoski K. E.; Poletto, J.; Vieira da Silva, M. J.; Ascencio Camargo, J. N.; Jacomini, A. P.; Goncalves, D. S.; Back, ?D. F. Moura, S.; Rosa, F. A. Org. Biomol. Chem. 2020, 18, 2524.
[11]
(b) Muzalevskiy V. M.; Sizova Z. A.; Panyushkin V. V.; Chertkov V. A.; Khrustalev V. N.; Nenajdenko V. G. J. Org. Chem. 2021, 86, 2385.
[11]
(c) Wan C.; Pang J.; Jiang W.; Zhang X.; Hu X. J. Org. Chem. 2021, 86, 4557.
[12]
Recent work: (a) Kowalczyk A.; Utecht-Jarzyńska, G.; Mlostoń, G.; Jasiński, M. Org. Lett. 2022, 24, 2499.
[12]
(b) Zhu C.; Zeng H.; Liu C.; Cai Y.; Fang X.; Jiang H. Org. Lett. 2020, 22, 809.
[12]
(c) Wang H.; Ning Y.; Sun Y.; Sivaguru P.; Bi X. Org. Lett. 2020, 22, 2012.
[12]
(d) Peng X.; Huang D.; Wang K.-H.; Wang Y.; Wang J.; Su Y.; Hu Y. Org. Biomol. Chem. 2017, 15, 6214.
[13]
(a) Yang Y.; Hu Z.; Li R.; Chen Y.; Zhan Z. Org. Biomol. Chem. 2018, 16, 197.
[13]
(b) Wen J.; Ding C.; Ding Z.; Li T.; Zhan Z. Eur. J. Org. Chem. 2015, 2015, 5230.
[13]
(c) Harnisch F.; Galeta J.; Harakat D.; Potac?ek M.; Bouillon J. J. Fluorine Chem. 2014, 158, 38.
[13]
(d) Wen J.; Tang H.; Xiong K.; Ding Z.; Zhan Z. Org. Lett. 2014, 16, 5940.
[14]
Kino T.; Nagase Y.; Ohtsuka Y.; Yamamoto K.; Uraguchi D.; Tokuhisa K.; Yamakawa T. J. Fluorine Chem. 2010, 131, 98.
[15]
Zhang X.; Wang J.; Wan Z. Org. Lett. 2015, 17, 2086.
[16]
Le C.; Chen T. Q.; Liang T.; Zhang P.; MacMillan D. W. C. Science 2018, 360, 1010.
[17]
Karmel C.; Rubel C. Z.; Kharitonova E. V.; Hartwig J. F. Angew. Chem., Int. Ed. 2020, 59, 6074.
[18]
Ji G.; Wang X.; Zhang S.; Xu Y.; Ye Y.; Li M.; Zhang Y.; Wang J. Chem. Commun. 2014, 50, 4361.
[19]
(a) Martins M. A. P.; Marzari M. R. B.; Frizzo C. P.; Zanatta M.; Buriol L.; Andrade V. P.; Zanatta N.; Bonacorso H. G.; Eur. J. Org. Chem. 2012, 2012, 7112.
[19]
(b) Sloop J. C.; Lechner B.; Washington G.; Bumgardner C. L.; Loehle W. D.; Creasy W. Int. J. Chem. Kinet. 2008, 40, 370.
[19]
(c) Sloop J. C.; Bumgardner C. L.; Loehle W. D. J. Fluorine Chem. 2002, 118, 135.
[19]
(d) Fustero S.; Román R.; Sanz-Cervera J. F.; Simón-Fuentes A.; Cu?at A. C.; Villanova S.; Murguía M. J. Org. Chem. 2008, 73, 3523.
[19]
(e) Norris T.; Colon-Cruz R.; Ripin D. H. B. Org. Biomol. Chem. 2005, 3, 1844.
[20]
Selected review: (a) Mykhailiuk P. K. Chem. Rev. 2020, 120, 12718.
[20]
Selected examples: (b) Li F.; Nie J.; Sun L.; Zheng Y.; Ma J.-A. Angew. Chem., Int. Ed. 2013, 52, 6255.
[20]
(c) Slobodyanyuk E. Y.; Artamonov O. S.; Shishkin O. V.; Mykhailiuk P. K. Eur. J.Org. Chem. 2014, 2014, 2487.
[20]
(d) Britton J.; Jamison T. F. Angew. Chem., Int. Ed. 2017, 56, 8823.
[20]
(e) Chen Z.; Zheng Y.; Ma J.-A. Angew. Chem., Int. Ed. 2017, 56, 4569.
[20]
(f) Lv S.; Zhou H.; Yu X.; Xu Y.; Zhu H.; Wang M.; Liu H.; Dai Z.; Sun G.; Gong X.; Sun X.; Wang L. Commun. Chem. 2019, 2, 69.
[21]
Gladow D.; Doniz-Kettenmann S.; Reissig H.-U. Helv. Chim. Acta 2014, 97, 808.
[22]
(a) Oh L. M. Tetrahedron Lett. 2006, 47, 7943.
[22]
(b) Utecht G.; Fruzinski A.; Jasiński M. Org. Biomol. Chem. 2018, 16, 1252.
[23]
Lee S.; Kim C.; Ann J.; Thorat S. A.; Kim E.; Park J.; Choi S.; Blumberg P. M.; Frank-Foltyn R.; Bahrenberg G.; Stockhausen H.; Christoph T.; Lee J. Bioorg. Med. Chem. Lett. 2017, 27, 4383.
[24]
Tian Y.; Li J; Zhang F.; Ma J.-A. Adv. Synth. Catal. 2021, 363, 2093.
[25]
Kowalczyk A.; Utecht-Jarzyńska G.; Mlostoń G.; Jasiński M. Org. Lett. 2022, 24, 13, 2499.
[26]
Wang K.-H.; Liu H.; Liu X.; Bian C.; Wang J.; Su Y.; Huang D.; Hu Y. Asian. J. Org. Chem. 2022, 11: e202200103.
[27]
Tanaka K.; Maeno S.; Mitsuhashi K. Chem. Lett. 1982, 543.
[28]
Kowalczyk A.; Utecht-Jarzyńska G.; Mlostoń G.; Jasiński M. J. Fluorine Chem. 2021, 241, 109691.
[29]
(a) Shawali A. S. Chem. Rev. 1993, 93, 2731.
[29]
(b) Hashimoto T.; Maruoka K. Chem. Rev. 2015, 115, 5366.
[30]
(a) Han T.; Wang K.-H.; Yang M.; Zhao P.; Wang F.; Wang J.; Huang D.; Hu Y. J. Org. Chem. 2022, 87, 498.
[30]
(b) Ren Y.; Ma R.; Feng Y.; Wang K.-H.; Wang J.; Huang D.; Lv X.; Hu Y. Asian J. Org. Chem. 2022, e202200438.
[30]
(c) Su Y.; Zhao Y.; Chang B.; Zhao X.; Zhang R.; Liu X.; Huang D.; Wang K.-H.; Huo C.; Hu Y. J. Org. Chem. 2019, 84, 6719.
[31]
Bégué D.; Qiao G.-G. J. Am. Chem. Soc. 2012, 134, 5339.
Outlines

/