Study on Secondary Metabolites from Fusarium graminearum

  • Bingwen Zhang ,
  • Yuqi Lin ,
  • Yanqing Xue ,
  • Jing Wang ,
  • Wenchao Yang ,
  • Xiaofeng Wang ,
  • Wen Liu
Expand
  • a School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024
    b State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032
    c National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, Central China Normal University, Wuhan 430079

Received date: 2023-05-25

  Revised date: 2023-06-20

  Online published: 2023-06-26

Supported by

National Key Research and Development Program of China(2022YFC2303100); National Natural Science Foundation of China(22193070); National Natural Science Foundation of China(32030002); Postdoctoral Science Preferential Funding of Zhejiang Province

Abstract

Fusarium species are able to produce structurally diverse secondary metabolites which exhibit different biological functions. Based on the epigenetic research strategy, the global negative regulator, kmt6 gene, which is related to the expression of the secondary metabolite gene cluster, was knocked out to activate the silent gene. A chemical investigation on the cultures extract of the mutant strain led to the isolation of compounds 1~4. Among them, fusarane B (1) and fusarane C (2) are two new compounds. Furthermore, the antitumor activities of 1~4 were assayed. Compounds 1 and 3 exhibited moderate inhibitory effect on two human cancer cells of Hela and Mia PaCa2. In addition, the biosynthetic pathways of two polyketones 2 and 4 were proposed based on in vivo examination and molecular docking experiment.

Cite this article

Bingwen Zhang , Yuqi Lin , Yanqing Xue , Jing Wang , Wenchao Yang , Xiaofeng Wang , Wen Liu . Study on Secondary Metabolites from Fusarium graminearum[J]. Chinese Journal of Organic Chemistry, 2023 , 43(11) : 4003 -4007 . DOI: 10.6023/cjoc202305031

References

[1]
Cuomo, C. A.; Güldener, U.; Xu, J. R.; Trail, F.; Turgeon, B. G.; DiPietro, A.; Walton, J. D.; Ma, L. J.; Baker, S. E.; Rep, M.; Adam, G.; Antoniw, J.; Baldwin, T.; Calvo, S.; Chang, Y. L.; Decaprio, D.; Gale, L. R.; Gnerre, S.; Goswami, R. S.; Hammond-Kosack, K.; Harris, L. J.; Hilburn, K.; Kennell, J. C.; Kroken, S.; Magnuson, J. K.; Mannhaupt, G.; Mauceli, E.; Mewes, H. W.; Mitterbauer, R.; Muehlbauer, G.; Münsterk?tter, M.; Nelson, D.; O'Donnell, K.; Ouellet, T.; Qi, W.; Quesneville, H.; Roncero, M. I.; Seong, K. Y.; Tetko, I. V.; Urban, M.; Waalwijk, C.; Ward, T. J.; Yao, J.; Birren, B. W.; Kistler, H. C. Science 2007, 317, 1400.
[2]
Zhang, Y.; He, J.; Jia, L. J.; Yuan, T. L.; Zhang, D.; Guo, Y.; Wang, Y.; Tang, W. H. PLoS Pathog. 2016, 12, e1005485.
[3]
Li, M.; Yu, R.; Bai, X.; Wang, H.; Zhang, H. Nat. Prod. Rep. 2020, 37, 1568.
[4]
Wei, J.; Wu, B. Fitoterapia 2020, 146, 104638.
[5]
Hameed, A.; Poznanski, P.; Noman, M.; Ahmed, T.; Iqbal, A.; Nadolska-Orczyk, A.; Orczyk, W. J. Agric. Food Chem. 2022, 70, 14571.
[6]
Tang, Z.; Tang, H.; Wang, W.; Xue, Y.; Chen, D.; Tang, W.; Liu, W. J. Am. Chem. Soc. 2021, 143, 19719.
[7]
Lin, Y.; Yang, Q.; Wang, W.; Li, Q.; Tang, Z.; Tang, W.; Tao, J.; Liu, W. Chin. J. Org. Chem. 2021, 41, 4504. (in Chinese)
[7]
(林月婷, 杨谦, 王婉秋, 李秋菊, 汤志军, 唐威华, 陶疆, 刘文, 有机化学, 2021, 41, 4504.)
[8]
Ding, W.; Zhang, B.; Xue, Y.; Lin, Y.; Tang, Z.; Wang, J.; Yang, W.; Wang, X.; Liu, W. Chin. J. Org. Chem. 2023, 43, 3319. (in Chinese)
[8]
(丁卫忠, 张炳文, 薛彦青, 林雨琦, 汤志军, 王婧, 杨文超, 王晓峰, 刘文, 有机化学, 2023, 43, 3319.)
[9]
Yang, Q.; Wang, W.; Lin, Y.; Lin, Y.; Tang, Z.; Wang, J.; Tao, J.; Tang, W.; Liu, W. Org. Biomol. Chem. 2021, 19, 6638.
[10]
Pang, B.; Zheng, Q.; Liu, W. Sci. Sin. Vitae 2015, 45, 1015. (in Chinese)
[10]
(庞博, 郑庆飞, 刘文, 中国科学: 生命科学, 2015, 45, 1015.)
[11]
Rutledge, P.; Challis, G. Nat. Rev. Microbiol. 2015, 13, 509.
[12]
Kikuchi, Y.; Kawashima, M.; Iwatsuki, M.; Kimishima, A.; Tsutsumi, H.; Asami, Y.; Inahashi, Y. J. Antibiot. 2023, 76, 316.
[13]
Machushynets, N.; Elsayed, S.; Du, C.; Siegler, M.; Cruz, M.; Genilloud, O.; Hankemeier, T.; Wezel, G. Sci. Rep. 2022, 12, 2813.
[14]
Adpressa, D.; Connolly, L.; Konkel, Z.; Neuhaus, G.; Chang, X.; Pierce, B.; Smith, K.; Freitag, M.; Loesgen, S. Fungal Genet. Biol. 2019, 132, 103256.
[15]
Li, G.; Jian, T.; Liu, X.; Lv, Q.; Zhang, G.; Ling, J. Molecules 2022, 27, 7365.
[16]
Elsebai, M. Nat. Prod. Res. 2021, 35, 1504.
[17]
Bashyal, B.; Gunatilaka, A. Nat. Prod. Res. 2010, 24, 349.
[18]
Qi, J.; Cheng, L.; Sun, Y.; Hirata, Y.; Ushida, N.; Ma, Z.; Osada, H.; Nishikawa, T.; Xiang, L. Angew. Chem., Int. Ed. 2018, 57, 8100.
[19]
Wang, C.; Chen, G.; Feng, C.; He, R.; Qin, S.; Hu, D.; Chen, H.; Liu, X.; Yao, X.; Gao, H. Chem. Commun. 2016, 52, 1250.
Outlines

/