REVIEWS

Research Progress on the Synthesis of Sesquiterpene Quinones and Hydroquinones Natural Products with Avarane Skeleton from Dysidea sp.

  • Wen Xun ,
  • Liqing Jiang ,
  • Xiaolei Chen ,
  • Jingchun Wu ,
  • Feiyan Liang ,
  • Yinan Deng ,
  • Bo Xu
Expand
  • a School of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, Guangdong 526061
    b School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, Guangdong 518055

Received date: 2023-04-06

  Revised date: 2023-06-12

  Online published: 2023-07-27

Supported by

National Natural Science Foundation of China(22101011); National Natural Science Foundation of China(22201245); Training Program of the College Students Sci-Tech Innovation of Zhaoqing University(S202110580075)

Abstract

Sesquiterpene quinones and hydroquinones obtained from the marine sponge Dysidea sp. with avarane skeleton are classified into three categories based on the differences of the bond connecting the quinone/hydroquinone unit and the sesquiterpene unit. The reported synthetic methods for these three types of natural products are reviewed in detail based on their key synthetic strategies with the aim of assisting in the synthesis of other natural products.

Cite this article

Wen Xun , Liqing Jiang , Xiaolei Chen , Jingchun Wu , Feiyan Liang , Yinan Deng , Bo Xu . Research Progress on the Synthesis of Sesquiterpene Quinones and Hydroquinones Natural Products with Avarane Skeleton from Dysidea sp.[J]. Chinese Journal of Organic Chemistry, 2023 , 43(12) : 4188 -4212 . DOI: 10.6023/cjoc202304009

References

[1]
Minale L.; Riccio R.; Sodano G. Tetrahedron Lett. 1974, 15, 3401.
[2]
(a) Chong C.; Zhang Q.; Ke J.; Zhang H.; Yang X.; Wang B.; Ding W.; Lu Z. Angew. Chem., Int. Ed. 2021, 60, 13807.
[2]
(b) Chong C.; Chang L.; Grimm I.; Zhang Q.; Kuang Y.; Wang B.; Kang J.; Liu W.; Baars J.; Guo Y.; Schmalz H.-G.; Lu Z. Chem. Sci. 2023, 14, 3302.
[2]
(c) Zhang Q.; Kuang Y.; Chang L.; Kang J.; Wang B.; Chong C.; Lu Z. Chin. Chem. Lett. 2023, 108338.
[3]
(a) Jiao W.-H.; Shi G.-H.; Xu T.-T.; Chen G.-D.; Gu B.-B.; Wang Z.; Peng S.; Wang S.-P.; Li J.; Han B.-N.; Zhang W.; Lin H.-W. J. Nat. Prod. 2016, 79, 406.
[3]
(b) Liu H.-Y.; Zhou M.; Shang R.-Y.; Hong L.-L.; Wang G.-H.; Tian W.-J.; Jiao W.-H.; Chen H.-F.; Lin H.-W. Chin. J. Nat. Med. 2022, 20, 148.
[4]
Chong C.; Lu Z. Synlett 2021, 32, 1777.
[5]
Baars J.; Grimm I.; Blunk D.; Neud?rfl J.-M.; Schmalz H.-G. Angew. Chem., Int. Ed. 2021, 60, 14915.
[6]
Hu S.; Tang Y. J. Am. Chem. Soc. 2022, 144, 19521.
[7]
(a) Hagiwara H.; Hamano K.; Nozawa M.; Hoshi T.; Suzuki T.; Kido F. J. Org. Chem. 2005, 70, 2250.
[7]
(b) Ling T.; Xu J.; Smith R.; Ali A.; Cantrell C. L.; Theodorakis E. A. Tetrahedron 2011, 67, 3023.
[7]
(c) Wan K. K.; Iwasaki K.; Umotoy J. C.; Wolan D. W.; Shenvi R. A. Angew. Chem., Int. Ed. 2015, 54, 2410.
[7]
(d) Kim D. E.; Zweig J. E.; Newhouse T. R. J. Am. Chem. Soc. 2019, 141, 1479.
[8]
For reviews of MHAT reactions: a Teruaki, M.; Tohru, Y. Bull. Chem. Soc. Jpn. 1995, 68, 17.
[8]
(b) Crossley S. W. M.; Obradors C.; Martinez R. M.; Shenvi R. A. Chem. Rev. 2016, 116, 8912.
[8]
(c) Green S. A.; Crossley S. W. M.; Matos J. L. M.; Vásquez-Céspedes S.; Shevick S. L.; Shenvi R. A. Acc. Chem. Res. 2018, 51, 2628.
[9]
(a) Vuagnoux-d'Augustin M.; Alexakis A. Chem.-Eur. J. 2007, 13, 9647.
[9]
(b) Alexakis A.; Albrow V.; Biswas K.; d'Augustin M.; Prieto O.; Woodward S. Chem. Commun. 2005, 2843.
[9]
(c) Ngoc D. T.; Albicker M.; Schneider L.; Cramer N. Org. Biomol. Chem. 2010, 8, 1781.
[10]
Nechaev A. A.; Jagtap P. R.; Ba?íková E.; Neumannová J.; Císa?ová I.; Matou?ová E. Org. Biomol. Chem. 2021, 19, 3434.
[11]
(a) Nicolaou K. C.; Vassilikogiannakis G.; M?gerlein W.; Kranich R. Angew. Chem., Int. Ed. 2001, 40, 2482.
[11]
(b) Nicolaou K. C.; Vassilikogiannakis G.; M?gerlein W.; Kranich R. Chem.-Eur. J. 2001, 7, 5359.
[11]
(c) Nielsen L. B.; Wege D. Org. Biomol. Chem. 2006, 4, 868.
[11]
(d) Pepper H. P.; Kuan K. K. W.; George J. H. Org. Lett. 2012, 14, 1524.
[11]
(e) Kravina A. G.; Carreira E. M. Angew. Chem., Int. Ed. 2018, 57, 13159.
[12]
(a) Hoffmann R.; Woodward R. B. Acc. Chem. Res. 1968, 1, 17.
[12]
(b) Woodward R. B.; Hoffmann R. Angew. Chem., Int. Ed. 1969, 8, 781.
[13]
Burke S. D.; Silks L. A.; Strickland S. M. S. Tetrahedron Lett. 1988, 29, 2761.
[14]
Yin X.; Mato M.; Echavarren A. M. Angew. Chem., Int. Ed. 2017, 56, 14591.
[15]
Liu R.; Xia M.; Ling C.; Fu S.; Liu B. Org. Lett. 2022, 24, 1642.
[16]
For selected examples, see: (a) Saimoto,H.; Houge, C.; Hesbain- Frisque, A.-M.; Mockel, A.; Ghosez, L. Tetrahedron Lett. 1983, 24, 2251.
[16]
(b) Marko I.; Ronsmans B.; Hesbain-Frisque A. M.; Dumas S.; Ghosez L.; Ernst B.; Greuter H. J. Am. Chem. Soc. 1985, 107, 2192.
[16]
(c) Osamu I.; Kozo S. Chem. Lett. 1995, 24, 53.
[16]
(d) Shim P.-J.; Kim H.-D. Tetrahedron Lett. 1998, 39, 9517.
[16]
(e) Kaiser D.; Bauer A.; Lemmerer M.; Maulide N. Chem. Soc. Rev. 2018, 47, 7899.
[16]
(f) Schmid M.; Grossmann A. S.; Wurst K.; Magauer T. J. Am. Chem. Soc. 2018, 140, 8444.
[17]
Schweinitz A.; Chtchemelinine A.; Orellana A. Org. Lett. 2011, 13, 232.
[18]
Chand H. R. Synlett 2009, 2009, 2545.
[19]
Jiao W.-H.; Huang X.-J.; Yang J.-S.; Yang F.; Piao S.-J.; Gao H.; Li J.; Ye W.-C.; Yao X.-S.; Chen W.-S.; Lin H.-W. Org. Lett. 2012, 14, 202.
[20]
Schmalzbauer B.; Herrmann J.; Müller R.; Menche D. Org. Lett. 2013, 15, 964.
[21]
Jiao W.-H.; Xu T.-T.; Yu H.-B.; Chen G.-D.; Huang X.-J.; Yang F.; Li Y.-S.; Han B.-N.; Liu X.-Y.; Lin H.-W. J. Nat. Prod. 2014, 77, 346.
[22]
Jiao W.-H.; Xu T.-T.; Zhao F.; Gao H.; Shi G.-H.; Wang J.; Hong L.-L.; Yu H.-B.; Li Y.-S.; Yang F.; Lin H.-W. Eur. J. Org. Chem. 2015, 2015, 960.
[23]
Hagiwara H.; Uda H. J. Org. Chem. 1988, 53, 2308.
[24]
Yu C.; Zhang X.; Zhang J.; Shen Z. Tetrahedron 2016, 72, 4337.
[25]
Li Y.-M.; Sun Y.-T.; Li B.-Y.; Qin H.-B. Org. Lett. 2021, 23, 7254.
[26]
Kuang Y.; Chang L.; Wang B.; Kang J.; Chong C.; Lu Z. Synlett 2023, DOI: 10.1055/a-2066-0860.
[27]
Fukui Y.; Narita K.; Katoh T. Chem.-Eur. J. 2014, 20, 2436.
[28]
(a) Sastry Mudiganti N. V.; Claessens S.; De Kimpe N. Tetrahedron 2009, 65, 1716.
[28]
(b) Kang W.-B.; Nan’ya S.; Toru T.; Ueno Y. Chem. Lett. 1988, 1415.
[28]
(c) Mukaiyama T.; Iwasawa N.; Yura T.; Clark R. S. J. Tetrahedron 1987, 43, 5003.
[29]
Zhu W.; Yin Q.; Lou Z.; Yang M. Nat. Commun. 2022, 13, 6633.
[30]
Baeckvall J. E.; Sellen M.; Grant B. J. Am. Chem. Soc. 1990, 112, 6615.
[31]
(a) Nugent W. A.; RajanBabu T. V. Angew. Chem., Int. Ed. 2021, 60, 2194.
[31]
(b) Gans?uer A.; Behlendorf M.; von Laufenberg D.; Fleckhaus A.; Kube C.; Sadasivam D. V.; Flowers II R. A. Angew. Chem., Int. Ed. 2012, 51, 4739.
[31]
(c) Gans?uer A.; von Laufenberg D.; Kube C.; Dahmen T.; Michelmann A.; Behlendorf M.; Sure R.; Seddiqzai M.; Grimme S.; Sadasivam D. V.; Fianu G. D.; Flowers?II R. A. Chem.-Eur. J. 2015, 21, 280.
[32]
(a) Everson D. A.; Shrestha R.; Weix D. J. J. Am. Chem. Soc. 2010, 132, 920.
[32]
(b) Everson D. A.; Jones B. A.; Weix D. J. J. Am. Chem. Soc. 2012, 134, 6146.
[32]
(c) Biswas S.; Weix D. J. J. Am. Chem. Soc. 2013, 135, 16192.
[32]
(d) Ariyarathna J. P.; Wu F.; Colombo S. K.; Hillary C. M.; Li W. Org. Lett. 2018, 20, 6462.
[33]
Snider B. B. Chem. Rev. 1996, 96, 339.
[34]
Dai X.; Wan Z.; Kerr R. G.; Davies H. M. L. J. Org. Chem. 2007, 72, 1895.
[35]
(a) Kazuhiko T.; Yuji H.; Koichiro O.; Hitosi N. Bull. Chem. Soc. Jpn. 1980, 53, 1698.
[35]
(b) Kawano H.; Itoh M.; Katoh T.; Terashima S. Tetrahedron Lett. 1997, 38, 7769.
[35]
(c) Chou Y.-Y.; Liao C.-C. Org. Lett. 2013, 15, 1584.
[35]
(d) Sun Y.; Chen P.; Zhang D.; Baunach M.; Hertweck C.; Li A. Angew. Chem., Int. Ed. 2014, 53, 9012.
[36]
Haque M. A.; Jana C. K. Chem.-Eur. J. 2017, 23, 13300.
[37]
(a) DeRosa S.; Minale L.; Riccio R.; Sodano G. J. Chem. Soc., 1976, 1408.
[37]
(b) Giordano F.; Puliti R. Acta Crystallogr. 1987, C43, 985.
[38]
(a) Müller W.; Sladi? D.; Zahn R. K.; B?ssler K.; Dogovi? N.; Gerner H.; Gasic M. J.; Schr?der H. C. Cancer Res. 1988, 47, 6565.
[38]
(b) Loya S.; Hizi A. FEBS Lett. 1990, 269, 131.
[38]
(c) Schr?der H. C.; Bégin M. E.; Kl?cking R.; Matthes E.; Sarma A. S.; Ga?i? M.; Müller W. E. G. Virus Res. 1991, 21, 213.
[38]
(d) De Clercq E. Med. Res. Rev. 2000, 20, 323.
[39]
Müller W. E.; Maidhof A.; Zahn R. K.; Schr?der H. C.; Gasi? M. J.; Heidemann D.; Bernd A.; Kurelec B.; Eich E.; Seibert G. Cancer Res. 1985, 45, 4822.
[40]
Schmitz F. J.; Lakshmi V.; Powell D. R.; Van der Helm D. J. Org. Chem. 1984, 49, 241.
[41]
Sarma A. S.; Chattopadhyay P. J. Org. Chem. 1982, 47, 1727.
[42]
An J.; Wiemer D. F. J. Org. Chem. 1996, 61, 8775.
[43]
Locke E. P.; Hecht S. M. Chem. Commun. 1996, 2717.
[44]
Watson A. T.; Park K.; Wiemer D. F.; Scott W. J. J. Org. Chem. 1995, 60, 5102.
[45]
(a) Pelletier S. W.; Chappell R. L.; Prabhakar S. J. Am. Chem. Soc. 1968, 90, 2889.
[45]
(b) Peterse A. J. G. M.; de Groot A. Rec. Trav. Chim. Pays-Bas 1977, 96, 219.
[46]
Kawano H.; Itoh M.; Katoh T.; Terashima S. Tetrahedron Lett. 1997, 38, 7769.
[47]
Ziegler F. E. Chem. Rev. 1988, 88, 1423.
[48]
Grieco P. A.; Gilman S.; Nishizawa M. J. Org. Chem. 1976, 41, 1485.
[49]
Anderson J. C.; Pearson D. J. J. Chem. Soc., 1998, 2023.
[50]
Tokoroyama T.; Tsukamoto M.; Asada T.; Iio H. Tetrahedron Lett. 1987, 28, 6645.
[51]
Nakamura M.; Suzuki A.; Nakatani M.; Fuchikami T.; Inoue M.; Katoh T. Tetrahedron Lett. 2002, 43, 6929.
[52]
(a) Nakatani M.; Nakamura M.; Suzuki A.; Fuchikami T.; Inoue M.; Katoh T. ARKIVOC 2003, 2003, 45.
[52]
(b) Suzuki A.; Nakatani M.; Nakamura M.; Kawaguchi K.; Inoue M.; Katoh T. Synlett 2003, 2003, 0329.
[52]
(c) Sakurai J.; Oguchi T.; Watanabe K.; Abe H.; Kanno S.-i.; Ishikawa M.; Katoh T. Chem.-Eur. J. 2008, 14, 829.
[53]
Nakatani M.; Nakamura M.; Suzuki A.; Inoue M.; Katoh T. Org. Lett. 2002, 4, 4483.
[54]
Ling T.; Xiang A.; Theodorakis E. Angew. Chem., Int. Ed. 1999, 38, 3089.
[55]
Barton D. H. R.; Bridon D.; Zardb S. Z. Tetrahedron 1987, 43, 5307.
[56]
Ling T.; Poupon E.; Rueden E. J.; Kim S. H.; Theodorakis E. A. J. Am. Chem. Soc. 2002, 124, 12261.
Outlines

/