Synthesis of (Bromodifluoromethyl)trimethylsilane and Its Applications in Organic Synthesis

  • Zhi Tu ,
  • Jinsheng Yu ,
  • Jian Zhou
Expand
  • a Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062
    b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032
    c Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571127

Received date: 2023-06-27

  Revised date: 2023-08-23

  Online published: 2023-08-30

Supported by

National Natural Science Foundation of China(22171087); National Natural Science Foundation of China(21971067); Innovation Program of Shanghai Municipal Education Commission(2023ZKZD37); Shanghai Science and Technology Innovation Action Plan(21N41900500); Shanghai Science and Technology Innovation Action Plan(20JC1416900)

Abstract

Bromodifluoromethyl trimethylsilane (TMSCF2Br) has proved to be an important difluoromethyl(alkyl)ation reagent that is widely applied in organic synthesis over the past decade, since it was used as a difluorocarbene precursor in 2011. This review aims to provide a briefly summary for the synthesis of TMSCF2Br, and to introduce the recent advances in the applications of TMSCF2Br as a difluorocarbene or trimethylsilyldifluoromethyl radical precursor for developing various difluoromethyl(alkyl)ations of different kinds of substrates. Meanwhile, the activation ways of TMSCF2Br and the possible mechanism, as well as its advantages and disadvantages in each kind of reactions are detailedly disccussed, which might provide some references and inspiration for researchers engaged in organic synthesis and organic fluorine chemistry.

Cite this article

Zhi Tu , Jinsheng Yu , Jian Zhou . Synthesis of (Bromodifluoromethyl)trimethylsilane and Its Applications in Organic Synthesis[J]. Chinese Journal of Organic Chemistry, 2023 , 43(10) : 3491 -3507 . DOI: 10.6023/cjoc202306024

References

[1]
(a) Uneyama K. Organofluorine Chemistry, Blackwell, Oxford, 2006.
[1]
(b) Chambers R. D. Fluorine in Organic Chemistry, Blackwell, Oxford, 2004.
[1]
(c) Kirsch P. Modern Fluoroorganic Chemistry: Synthesis Reactivity, Applications, 2nd ed., Wiley-VCH, Weinheim, 2013.
[2]
(a) Erickson J. A.; McLoughlin J. I. J. Org. Chem. 1995, 60, 1626.
[2]
(b) Sap J. B.; Meyer C. F.; Straathof N. J.; Iwumene N.; Am Ende C. W.; Trabanco A. A.; Gouverneur V. J. Am. Chem. Soc. 2017, 139, 9325.
[2]
(c) Zafrani Y.; Saphier S.; Gershonov E. Future Med. Chem. 2020, 12, 361.
[2]
(d) Sap J. B.; Meyer C. F; Straathof N. J.; Iwumene N.; Am Ende C. W.; Trabanco A. A.; Gouverneur V. Chem. Soc. Rev. 2021, 50, 8214.
[3]
(a) Prakash G. K. S.; Yudin A. K. Chem. Rev. 1997, 97, 757.
[3]
(b) Liu X.; Xu C.; Wang M.; Liu Q. Chem. Rev. 2015, 115, 683.
[3]
(c) Dilman A. D.; Levin V. V. Mendeleev Commun. 2015, 25, 239.
[3]
(d) Rong J.; Ni C.-F.; Hu J.-B. Asian J. Org. Chem. 2017, 6, 139.
[3]
(e) Chen D.-B.; Gao X.; Song S.-R.; Kou M.; Ni C.-F.; Hu J.-B. Sci. Sin.: Chim. 2023, 53, 375.
[4]
Wang F.; Zhang W.; Zhu J.-M.; Li H.-F.; Huang K.-W.; Hu J.-B. Chem. Commun. 2011, 47, 2411
[5]
Li L.-C.; Wang F.; Ni C.-F.; Hu J.-B. Angew. Chem., Int. Ed. 2013, 52, 12390.
[6]
(a) Hu J.-B.; Zhang W.; Wang F. Chem. Commun. 2009, 7465.
[6]
(b) Hu J.-B. J. Fluorine Chem. 2009, 130, 1130.
[6]
(c) Qing F.-L.; Zheng F. Synlett 2011, 2011, 1052.
[6]
(d) Meanwell N. A. J. Med. Chem. 2011, 54, 2529.
[6]
(e) Ni C.-F.; Hu J.-B. Synthesis 2014, 46, 842.
[6]
(f) Belhomme M. C.; Besset T.; Poisson T.; Pannecoucke X. Chem.-Eur. J. 2015, 21, 12836.
[6]
(g) Zafrani Y.; Yeffet D.; Sod-Moriah G.; Berliner A.; Amir D.; Marciano D.; Gershonov E.; Saphier S. J. Med. Chem. 2017, 60, 797.
[7]
(a) Wang J.; Sánchez-Roselló M.; Ace?a J. L.; Del Pozo C.; Srochinsky A. E.; Fustero S.; Soloshonok V. A.; Liu H. Chem. Rev. 2014, 114, 2432.
[7]
(b) Chowdhury M. A.; Abdellatif K. R.; Dong Y.; Das D.; Suresh M. R.; Knaus E. E. J. Med. Chem. 2009, 52, 1525.
[7]
(c) Gewehr M.; Gladwin R. J.; Brahm L. US 2012/0245031, 2012.
[7]
(d) Pérez R. A.; Sánchez-Brunete C.; Miguel E.; Tadeo J. L. J. Agric. Food Chem. 1998, 46, 1864.
[8]
(a) Wang X.; Pan S.-T.; Luo Q.-Y.; Wang Q.; Ni C.-F.; Hu J.-B. J. Am. Chem. Soc. 2022, 144, 12202.
[8]
(b) Trang B.; Li Y.-L.; Xue X.-S.; Ateia M.; Houk K. N.; Dichtel W. R. Science 2022, 377, 839.
[8]
(c) Tsyrulnikova A. S.; Vershilov S. V.; Popova L. M.; Lebedev N. V.; Litvinenko E. V.; Ismagilov N. G. J. Fluorine Chem. 2022, 257, 109972.
[9]
Evich M. G.; Davis M. J. B.; McCord J. P.; Acrey B.; Awkerman J. A.; Knappe D. R. U.; Lindstrom A. B.; Speth T. F.; Tebes-Stevens C.; Strynar M. J.; Wang Z.-Y.; Weber E. J.; Henderson W. M.; Washington J. W. Science 2022, 375, eabg9065.
[10]
(a) Krishnamoorthy S.; Prakash G. K. S. Synthesis 2017, 49, 3394.
[10]
(b) Yerien D. E.; Barata-Vallejo S.; Postigo A. Chem. Eur. J. 2017, 23, 14676.
[10]
(c) Sap J. B.; Meyer C. F.; Straathof N. J.; Iwumene N.; Am Ende C. W.; Trabanco A. A.; Gouverneur V. Chem. Soc. Rev. 2021, 50, 8214.
[10]
(d) Dilman A. D.; Levin V. V. Acc. Chem. Res. 2018, 51, 1272.
[11]
(a) Broicher V.; Geffken D. J. Organomet. Chem. 1990, 381, 315.
[11]
(b) Ruppert I.; Schlich K.; Volbach W. Tetrahedron Lett. 1984, 25, 2195.
[11]
(c) Yudin A. K.; Prakash G. K. S.; Deffieux D.; Bradley M.; Bau R.; Olah G. A. J. Am. Chem. Soc. 1997, 119, 1572.
[12]
Kosobokov M. D.; Dilman A. D.; Levin V. V.; Struchkova M. I. J. Org. Chem. 2012, 77, 5850.
[13]
(a) Kosobokov M. D.; Levin V. V.; Struchkova M. I.; Dilman A. D. Org. Lett. 2014, 16, 3784.
[13]
(b) Levin V. V.; Smirnov V. O.; Struchkova M. I.; Dilman A. D. J. Org. Chem. 2015, 80, 9349.
[14]
Maslov A. S.; Smirnov V. O.; Struchkova M. I.; Arkhipov D. E.; Dilman A. D. Tetrahedron Lett. 2015, 56, 5048.
[15]
Xie Q.-Q.; Zhu Z.-Y.; Ni C.-F.; Hu J.-B. Org. Lett. 2019, 21, 9138.
[16]
Liu A.; Ni C.-F.; Xie Q.-Q.; Hu J.-B. Angew. Chem., Int. Ed. 2022, 61, e202115467.
[17]
Liu A.; Ni C.-F.; Xie Q.-Q.; Hu J.-B. Angew. Chem., Int. Ed. 2023, 62, e202217088.
[18]
Tsymbal A. V.; Kosobokov M. D.; Levin V. V.; Struchkova M. I.; Dilman A. D. J. Org. Chem. 2014, 79, 7831.
[19]
Trifonov A. L.; Zemtsov A. A.; Levin V. V.; Struchkova M. I.; Dilman A. D. Org. Lett. 2016, 18, 3458.
[20]
Trifonov A. L.; Dilman A. D. Org. Lett. 2021, 23, 6977
[21]
Trifonov A. L.; Levin V. V.; Struchkova M. I.; Dilman A. D. Org. Lett. 2017, 19, 5304.
[22]
(a) Glenadel Q.; Ismalaj E.; Billard T. J. Org. Chem. 2016, 81, 8268.
[22]
(b) Fang Y.; Li X.; Liu C.-Y.; Tang J.; Chen Z.-P. J. Org. Chem. 2021, 86, 18081.
[23]
(a) Kosobokov M. D.; Levin V. V.; Struchkova M. I.; Dilman A. D. Org. Lett. 2015, 17, 760.
[23]
(b) Fedorov O. V.; Kosobokov M. D.; Levin V. V.; Struchkova M. I.; Dilman A. D. J. Org. Chem. 2015, 80, 5870.
[24]
(a) Song X.-N.; Chang J.; Zhu D.-S.; Li J.-H.; Xu C.; Liu Q.; Wang M. Org. Lett. 2015, 17, 1712.
[24]
(b) Chang J.; Song X.-N.; Huang W.-Q.; Zhu D.-S.; Wang M. Chem. Commun. 2015, 51, 15362.
[25]
(a) Song X.-N.; Tian S.-Q.; Zhao Z.-M.; Zhu D.-S.; Wang M. Org. Lett. 2016, 18, 3414.
[25]
(b) Chang J.; Xu C.; Gao J.; Gao F.-Y.; Zhu D.-S.; Wang M. Org. Lett. 2017, 19, 1850.
[26]
Zhu J.; Xu M.-H.; Gong B.-H.; Lin A.-J.; Gao S. Org. Lett. 2023, 25, 3271.
[27]
(a) Xie Q.-Q.; Ni C.-F.; Zhang R.-Y.; Li L.-C.; Rong J.; Hu J.-B. Angew. Chem., Int. Ed. 2017, 56, 3206.
[27]
(b) Zhang R.-Y.; Ni C.-F.; Xie Q.-Q.; Hu J.-B. Tetrahedron 2020, 76, 131676.
[28]
Smirnov V. O.; Maslov A. S.; Struchkova M. I.; Arkhipov D. E.; Dilman A. D. Mendeleev Commun. 2015, 25, 452.
[29]
Krishnamurti V.; Barrett C.; Ispizua-Rodriguez X.; Coe M.; Prakash G. K. S. Org. Lett. 2019, 21, 9377.
[30]
(a) Zhang R.-Y.; Li Q.-G.; Ni C.-F.; Hu J.-B. Chem. Eur. J. 2021, 27, 17773.
[30]
(b) Zhu X.-J.; Wei J.; Hu C.-X.; Xiao Q.-T.; Cai L.-T.; Wang H.; Xie Y.-Y.; Sheng R. Eur. J. Org. Chem. 2022, e202200629.
[30]
(c) Sheng H.-Y.; Su J.-K.; Li X.; Song Q.-L. CCS Chem. 2022, 4, 3820.
[31]
Huang Y.-B.; Lin Z.-M.; Chen Y.; Fang S.-J.; Jiang H.-F.; Wu W.-Q. Org. Chem. Front. 2019, 6, 2462.
[32]
Kim Y.; Heo J.; Kim D.; Chang S.; Seo S. Nat. Commun. 2020, 11, 4761.
[33]
Hayashi H.; Takano H.; Katsuyama H.; Harabuchi Y.; Maeda S.; Mita T. Chem. Eur. J. 2021, 27, 10040.
[34]
Zhu Z.; Krishnamurti V.; Ispizua-Rodriguez X.; Barrett C.; Prakash G. K. S. Org. Lett. 2021, 23, 6494.
[35]
Zhu Z.-Y.; Xu Y.-J.; Krishnamurti V.; Koch C. J.; Ispizua-Rodriguez X.; Barrett C.; Prakash G. K. S. J. Fluorine Chem. 2022, 261, 110023.
[36]
Song H.-H.; Li W.-H.; Wang X.-Y.; Wang K.-T.; Li J.-W.; Liu S.; Gao P.; Duan X.-H.; Hu J.-B.; Hu M.-Y. CCS Chem. 2023, DOI: 10.31635/ccschem.023.202302980.
[37]
(a) Levin V. V.; Zemtsov A. A.; Struchkova M. I.; Dilman A. D. Org. Lett. 2013, 15, 917.
[37]
(b) Smirnov V. O.; Maslov A. S.; Levin V. V.; Struchkova M. I.; Dilman A. D. Russ. Chem. Bull. 2014, 63, 2564.
[37]
(c) Zemtsov A. A.; Kondratyev N. S.; Levin V. V.; Struchkova M. I.; Dilman A. D. J. Org. Chem. 2014, 79, 818.
[37]
(d) Smirnov V. O.; Struchkova M. I.; Arkhipov D. E.; Korlyukov A. A.; Dilman A. D. J. Org. Chem. 2014, 79, 11819.
[37]
(e) Kondratyev N. S.; Levin V. V.; Zemtsov A. A.; Struchkova M. I.; Dilman A. D. J. Fluorine Chem. 2015, 176, 89.
[37]
(f) Zemtsov A. A.; Volodin A. D.; Levin V. V.; Struchkova M. I.; Dilman A. D. Beilstein J. Org. Chem. 2015, 11, 2145.
[37]
(g) Zemtsov A. A.; Kondratyev N. S.; Levin V. V.; Struchkova M. I.; Dilman A. D. Russ. Chem. Bull. 2016, 65, 2760.
[37]
(h) Ashirbaev S. S.; Levin V. V.; Struchkova M. I.; Dilman A. D. J. Fluorine Chem. 2016, 191, 143.
[38]
(a) Wang J.-D.; Tokunaga E.; Shibata N. Chem. Commun. 2018, 54, 8881.
[38]
(b) Wang Y.-K.; Wang S.-F.; Zhang C.-H.; Zhao T.; Hu Y.-Q.; Zhang M.-W.; Fu Y. Synlett 2021, 32, 1123.
[38]
(c) Wang Y.-K.; Wang S.-F.; Qiu P.-Y.; Fang L.-Z.; Wang K.; Zhang Y.-W.; Zhao C.-H.; Zhao T. Org. Biomol. Chem. 2021, 19, 4788.
[39]
Xie Q.-Q.; Zhu Z.-Y.; Li L.-C.; Ni C.-F.; Hu J.-B. Angew. Chem., Int. Ed. 2019, 58, 6405.
[40]
(a) Hu M.-Y.; Ni C.-F.; Li L.-C.; Han Y.-X.; Hu J.-B. J. Am. Chem. Soc. 2015, 137, 14496.
[40]
(b) Zhang Z.-K.; Yu W.-Z.; Wu C.-G.; Wang C.-P.; Zhang Y.; Wang J.-B. Angew. Chem., Int. Ed. 2016, 55, 273.
[41]
(a) Fu X.-P.; Xue X.-S.; Zhang X.-Y.; Xiao Y.-L.; Zhang S.; Guo Y.-L.; Leng X.-B.; Houk K. N.; Zhang X.-G. Nat. Chem. 2019, 11, 948.
[41]
(b) Zeng X.; Li Y.; Min Q.-Q.; Xue X.-S.; Zhang X.-G. Nat. Chem. 2023, 15, 1064.
[42]
Yang R.-Y.; Wang H.; Xu B. Chem. Commun. 2021, 57, 4831.
[43]
(a) Zhang R.; Zhang Z.-K.; Zhou Q.; Yu L.-F.; Wang J.-B. Angew. Chem., Int. Ed. 2019, 58, 5744.
[43]
(b) Zhang R.; Zhang Z.-K.; Wang K.; Wang J.-B. J. Org. Chem. 2020, 85, 9791.
[44]
Wang X.; Pan S.-T.; Luo Q.-Y.; Wang Q.; Ni C.-F.; Hu J.-B. J. Am. Chem. Soc. 2022, 144, 12202.
[45]
Supranovich V. I.; Levin V. V.; Struchkova M. I.; Korlyukov A. A.; Dilman A. D. Org. Lett. 2017, 19, 3215.
[46]
Supranovich V. I.; Levin V. V.; Dilman A. D. Beilstein J. Org. Chem. 2020, 16, 1550.
[47]
(a) Liu L.; Aguilera M. C.; Lee W.; Youshaw C. R.; Neidig M. L.; Gutierrez O. Science 2021, 374, 432.
[47]
(b) Rentería-Gómez A.; Lee W.; Yin S.; Davis M.; Gogoi A. R.; Gutierrez O. ACS Catal. 2022, 12, 11547.
[48]
Ellefsen J. D.; Miller S. J. J. Org. Chem. 2022, 87, 10250.
[49]
Choi K.; Mormino M. G.; Kalkman E. D.; Park J.; Hartwig J. F. Angew. Chem., Int. Ed. 2022, 61, e202208204.
Outlines

/