ARTICLES

Study of the Halide Salt Catalyzed [3+2] Cycloaddition of α,β-Epoxy Carboxylate with Isocyanate

  • Huakun Wang ,
  • Xiaolong Ren ,
  • Yining Xuan
Expand
  • School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006

Received date: 2023-05-16

  Revised date: 2023-08-19

  Online published: 2023-09-08

Supported by

Department of Science and Technology of Guangdong Province(2017A020211027)

Abstract

The [3+2] cycloaddition reaction of α,β-epoxy carboxylate and isocyanate was investigated. By employing magnesium bromide as a catalyst, efficient synthesis of chiral oxazolidin-2-ones was achieved through aforementioned [3+2] cycloaddition reaction. The reaction exhibited good substrate adaptability. For reactions involving chiral epoxide compounds, the product enantiomeric excess remains good. Furthermore, under basic conditions, taxol C-13 side chain ((2R,3S)-methyl 3-benzamido-2-hydroxy-3-phenylpropanoate) was synthesized via ring-opening reaction of the chiral oxazolidin-2-ones product with an optical purity of up to 97% ee.

Cite this article

Huakun Wang , Xiaolong Ren , Yining Xuan . Study of the Halide Salt Catalyzed [3+2] Cycloaddition of α,β-Epoxy Carboxylate with Isocyanate[J]. Chinese Journal of Organic Chemistry, 2024 , 44(1) : 251 -258 . DOI: 10.6023/cjoc202305018

References

[1]
(a) Diekema, D. J.; Jones, R. N. Drugs 2000, 59, 7.
[1]
(b) Bassetti, M.; Baguneid, M.; Bouza, E.; Dryden, M.; Nathwani, D.; Wilcox, M. Clin. Microbiol. Infect. 2014, 20, 3.
[2]
(a) Wang, B. S.; Elageed, E. H. M.; Zhang, D. W.; Yang, S. J..; Wu, S.; Zhang, G. R.; Gao, G. H. ChemCatChem 2014, 6, 278.
[2]
(b) Wang, B. S.; Luo, Z. J.; Elageed, E. H. M.; Wu, S.; Zhang, Y. Y.; Wu, X. P.; Xia, F.; Zhang, G. R.; Gao, G. H. ChemCatChem 2016, 8, 830.
[2]
(c) Xu, B.; Wang, P.; Lv, M.; Yuan, D.; Yao, Y. M. ChemCatChem 2016, 8, 2466.
[2]
(d) Chen, F.; Li, M.; Wang, J. J.; Dai, B.; Liu, N. J. CO2 Util. 2018, 28, 181.
[2]
(e) Seo, U. R.; Chung, Y. K. Green Chem. 2017, 19, 803.
[2]
(f) Zhou, M. X.; Zheng, X. Z.; Wang, Y. R.; Yuan, D.; Yao, Y. M. ChemCatChem 2019, 11, 5783.
[3]
Roush, W. R.; James, R. A. Aust. J. Chem. 2002, 55, 141.
[4]
Shibata, I.; Baba, A.; Iwasaki, H.; Matsuda, H. J. Org. Chem. 1986, 51, 2177.
[5]
Baba, A.; Seki, K.; Matsuda, H. J. Heterocycl. Chem. 1990, 27, 1925.
[6]
Fujiwara, M.; Baba, A.; Tomohisa, Y.; Matsuda, H. Chem. Lett. 1986, 15, 1963.
[7]
Paddock, R. L.; Adhikari, D.; Lord, R. L.; Baik, M.; Nguyen, S. T. Chem. Commun. 2014, 50, 15187.
[8]
Speranza, G. P.; Peppel, W. J. J. Org. Chem. 1958, 23, 1922.
[9]
Qian, C. T.; Zhu, D. M. Synlett 1994, 129.
[10]
Zhang, X. X.; Chen, W. Chem. Lett. 2010, 39, 527.
[11]
Yingcharoen, P.; Natongchai, W.; Poater, A.; D' Elia, V. Catal. Sci. Technol. 2020, 10, 5544.
[12]
Rostami, A.; Ebrahimi, A.; Sakhaee, N.; Golmohammadi, F.; Al-Harrasi, A. J. Org. Chem. 2022, 87, 40.
[13]
Xuan, Y. N.; Lin, H. S.; Yan, M. Org. Biomol. Chem. 2013, 11, 1815.
[14]
Righi, G.; Rumboldt, G.; Bonini, C. Tetrahedron 1995, 51, 13401.
[15]
For the datils of the mechanism research, see supporting information.
[16]
(a) Schiff, P. B.; Fant, J.; Horwitz, S. B. Nature 1979, 277, 665.
[16]
(b) Wani, M. C.; Horwitz, S. B. Anti-Cancer Drugs 2014, 25, 482.
[16]
(c) Baloglu, E.; Kingston, D. G. I. J. Nat. Prod. 1999, 62, 1068.
[17]
Afońkin, A. A.; Kostrikin, L. M.; Shumeiko, A. E.; Popov, A. F.; Matveev, A. A.; Matvienko, V. N.; Zabudkin, A. F. Russ. Chem. Bull. 2012, 61, 2149.
[18]
Mamedov, V. A.; Mamedova, V. L.; Syakaev, V. V.; Voronina, J. K.; Mahrous, E. M.; Korshin, D. E.; Latypov, S. K.; Sinyashin, O. G. Tetrahedron 2020, 76, 131478.
[19]
Agarwal, K. C.; Knaus, E. E. J. Heterocycl. Chem. 1985, 22, 65.
[20]
McGrew, L. A.; Sweeny, W.; Campbell, T. W.; Foldi, V. S. J. Org. Chem. 1964, 29, 3002.
[21]
Wani, M. C.; Taylor, H. L.; Wall, M. E.; Coggon, P.; McPhail, A. T. J. Am. Chem. Soc. 1971, 93, 2325.
Outlines

/