Chinese Journal of Organic Chemistry >
Silylene/Organoaluminum Lewis Pair System and the Initiation Property for Polymerization of (Meth)acrylates
Received date: 2023-05-15
Revised date: 2023-08-05
Online published: 2023-09-08
Supported by
National Natural Science Foundation of China(21972112)
The initiation polymerization property of (meth)acrylates by using the silylene/organoaluminum Lewis pair (LP) system is studied. Four silylenes L(Ph2P)Si (Si-1, L=PhC(NtBu)2), L[4-MeC6H4(Ph2P)N]Si (Si-2), L[2,6-iPr2C6H3(1,5- C8H14B)N]Si (Si-3), and L(LSi)Si (Si-4) as the Lewis base (LB) were synthesized, together with six organoaluminums Al(C6F5)3, AlMe(BHT)2, AliBu(BHT)2, AliBu2(BHT), AliBu(BHT*)2, and AliBu2(BHT*) (BHT=2,6-tBu2-4-MeC6H2O and BHT*=2,4,6-tBu3C6H2O) as the Lewis acid (LA). Si-1/organoaluminum and Si-4/organoaluminum LP systems all enable to initiate the complete methacrylate (MMA) polymerization, achieving turnover of frequency (TOF) activities in the range of 50~400 h-1 with PMMA Mn of 82000~271000 and Đ of 1.11~1.81. Neither Si-2/organoaluminum or Si-3/organoaluminum was active. The Si-1/Al(C6F5)3 displayed poor reactivity on n-butyl acrylate (nBA) and 2-ethylhexyl acrylate (EHA). However, the Si-1/other organoaluminums exhibited both complete nBA and EHA polymerizations. For nBA, the TOFs were obtained by 4.8×104~14.4×104 h-1, in which the PnBAs were produced with Mn 100000~179000 and Đ 1.08~1.59. For EHA, the TOFs were up to 14.4×104~36.0×104 h-1, where the PEHAs were yielded with Mn 81000~240000 and Đ 1.12~1.95. The probable polymerization mechanism with the silylene/organoaluminum LP system is investigated.
Yiling Zhao , Zhikang Chen , Lei Li , Conglei Liu , Hongping Zhu . Silylene/Organoaluminum Lewis Pair System and the Initiation Property for Polymerization of (Meth)acrylates[J]. Chinese Journal of Organic Chemistry, 2023 , 43(10) : 3590 -3597 . DOI: 10.6023/cjoc202305019
| [1] | Baskaran D. Prog. Polym. Sci. 2003, 28, 521. |
| [2] | Kwon Y.; Faust R. Adv. Polym. Sci. 2004, 167, 107. |
| [3] | Kanazawa A.; Kanaoka S.; Aoshima S. Chem. Lett. 2010, 39, 1232. |
| [4] | Webster O. W.; Hertler W. R.; Sogah D. Y.; Farnham W. B.; Rajanbabu T. V. J. Am. Chem. Soc. 1983, 105, 5706. |
| [5] | Webster O. W. J. Polym. Sci., Part A 2000, 38, 2855. |
| [6] | Anastasaki A.; Nikolaou V.; Nurumbetov G.; Wilson P.; Kempe K.; Quinn J. F.; Davis T. P.; Whittaker M. R.; Haddleton D. M. Chem. Rev. 2016, 116, 835. |
| [7] | Ouchi M.; Sawamoto M. Macromolecules 2017, 50, 2603. |
| [8] | Xiao L.; Zhang Y.; Hong M. Chin. J. Org. Chem. 2023, 43, 949 (in Chinese). |
| [8] | (肖丽娟, 张艳平, 洪缪, 有机化学, 2023, 43, 949.) |
| [9] | Wang Q.; Zhao W.; Zhang S.; He J.; Zhang Y.; Chen E. Y.-X. ACS Catal. 2018, 8, 3571. |
| [10] | Guan Y.; Chang K.; Sun Q.; Xu X. Chin. J. Org. Chem. 2022, 42, 1326 (in Chinese). |
| [10] | (管怡雯, 常克俭, 孙千林, 徐信, 有机化学, 2022, 42, 1326.) |
| [11] | Zhao W.; Wang Q.; He J.; Zhang Y. Polym. Chem. 2019, 10, 4328. |
| [12] | Zhang P.; Zhou H.; Lu X. Macromolecules 2019, 52, 4520. |
| [13] | Wang X.; Hong M. Macromolecules 2020, 53, 4659. |
| [14] | Zhang Z.; Wang X.; Wang X.; Li Y.; Hong M. Macromolecules 2021, 54, 8495. |
| [15] | Jia Y.; Ren W.; Liu S.; Xu T.; Wang Y.; Lu X. ACS Macro. Lett. 2014, 3, 896. |
| [16] | Ottou W. N.; Conde-Mendizabal E.; Pascual A.; Wirotius A. L.; Bourichon D.; Vignolle J.; Robert F.; Landais Y.; Sotiropoulos J. M.; Miqueu K.; Taton D. Macromolecules 2017, 50, 762. |
| [17] | Xu P.; Xu X. ACS Catal. 2018, 8, 198. |
| [18] | Kikuchi S.; Chen Y.; Kitano K.; Sato S.-I.; Satoh T.; Kakuchi T. Macromolecules 2016, 49, 3049. |
| [19] | Zhao W.; He J.; Zhang Y. Sci. Bull. 2019, 64, 1830. |
| [20] | Hong M.; Chen J.; Chen E. Y.-X. Chem. Rev. 2018, 118, 10551. |
| [21] | McGraw M. L.; Chen E. Y.-X. Macromolecules 2020, 53, 6102. |
| [22] | Zhang Y.; Miyake G. M.; John M. G.; Falivene L.; Caporaso L.; Cavallo L.; Chen E. Y.-X. Dalton Trans. 2012, 41, 9119. |
| [23] | Jia Y.; Wang Y.; Ren W.; Xu T.; Wang J.; Lu X. Macromolecules 2014, 47, 1966. |
| [24] | Wang Q. Y.; Zhao W. C.; He J. H.; Zhang Y. T.; Chen E. Y.-X. Macromolecules 2017, 50, 123. |
| [25] | Chen Y.; Shen J.; Liu S.; Zhao J.; Wang Y.; Zhang G. Macromolecules 2018, 51, 8286. |
| [26] | Walther P.; Krau? A.; Naumann S. Angew. Chem., Int. Ed. 2019, 58, 10737. |
| [27] | Murahashi S.; Nozakura S.; Hatada K.; Takeuchi S.; Aoki T. Seniken Nenpo 1960, 13, 99. |
| [28] | Ikeda M.; Hirano T.; Tsuruta T. Makromol. Chem. 1971, 150, 127. |
| [29] | Kitayama T.; Iijima T.; Nishiura T.; Hatada K. Polym. Bull. 1992, 28, 327. |
| [30] | Zhang Y.; Miyake G. M.; Chen E. Y.-X. Angew. Chem., Int. Ed. 2010, 49, 10158. |
| [31] | Wang X.; Zhang Y.; Hong M. Molecules 2018, 23, 442. |
| [32] | Zhou Y.; Jiang S.; Xu X. Chin. J. Chem. 2021, 39, 149. |
| [33] | Yao S.-L.; Xiong Y.; Driess M. Organometallics 2011, 30, 1748. |
| [34] | Hadlington T. J.; Driess M.; Jones C. Chem. Soc. Rev. 2018, 47, 4176. |
| [35] | Shan C.; Yao S.; Driess M. Chem. Soc. Rev. 2020, 49, 6733. |
| [36] | Vidal F.; Lin H.; Morales C.; J?kle F. Molecules 2018, 23, 405. |
| [37] | Chia C.-C.; Li Y.; Xiao L.; Yang M.-C.; Su M.-D.; So C.-W. Eur. J. Org. Chem. 2022, e202200003. |
| [38] | Hadlington T. J.; Driess M.; Jones C. Chem. Soc. Rev. 2018, 47, 4176. |
| [39] | Shan C.; Yao S.; Driess M. Chem. Soc. Rev. 2020, 49, 6733. |
| [40] | Zhao Y.; Chen Y.; Zhang L.; Li J.; Peng Y.; Chen Z.; Jiang L.; Zhu H. Inorg. Chem. 2022, 61, 5215. |
| [41] | Chen Y.; Li J.; Zhao Y.; Zhang L.; Tan G.; Zhu H.; Roesky H. W. J. Am. Chem. Soc. 2021, 143, 2212. |
| [42] | Li J.; Goffitzer D. J.; Xiang M.; Chen Y.; Jiang W.; Diefenbach M.; Zhu H.; Holthausen M. C.; Roesky H. W. J. Am. Chem. Soc. 2021, 143, 8244. |
| [43] | Chen Y.; Chen Z.; Jiang L; Li J.; Zhao Y.; Zhu H.; Roesky H. W. Chem. Eur. J. 2022, 28, e2021037. |
| [44] | Kong D.; Dai W.; Zhao Y.; Chen Y.; Zhu H. Chin. J. Org. Chem. 2023, 43, 1843 (in Chinese). |
| [44] | (孔德亮, 戴闻, 赵怡玲, 陈艺林, 朱红平, 有机化学, 2023, 43, 1843.) |
| [45] | Chen Z.; Zhao W.; Liu C.; Jiang L.; Fu G. ; Zhang Y.; Zhu H. Polym. Chem. 2023, 14, 2344. |
| [46] | Azhakar R.; Ghadwal R. S.; Roesky H. W.; Wolf H.; Stalke D. Organometallics 2012, 31, 4588. |
| [47] | Sen S. S.; Jana A.; Roesky H. W.; Schulzke C. Angew. Chem., Int. Ed. 2009, 48, 8536. |
| [48] | So C. W.; Roesky H. W.; Magull J.; Oswald R. B. Angew. Chem., Int. Ed. 2006, 45, 3948. |
| [49] | Sen S. S.; Roesky H. W.; Stern D.; Henn J.; Stalke D. J. Am. Chem. Soc. 2010, 132, 1123. |
| [50] | Chen J.; Chen E. Y. X. Dalton Trans. 2016, 45, 6105. |
| [51] | Lee C. H.; Lee S. J.; Park J. W.; Kim K. H.; Lee B. Y.; Oh J. S. J. Mol. Catal. A-Chem. 1998, 132, 231. |
| [52] | Stapleton R. A.; Al-Humydi A.; Chai J.; Galan B. R.; Collins S. Organometallics 2006, 25, 5083. |
| [53] | Faingol’d E. E.; Bravaya N. M.; Panin A. N.; Babkina O. N.; Saratovskikh S. L.; Privalov V. I. J. Appl. Polym. Sci. 2016, 133, 43276. |
| [54] | He J.; Zhang Y.; Falivene L.; Caporaso L.; Cavallo L.; Chen E. Y.-X. Macromolecules 2014, 47, 7765. |
| [55] | Bai Y.; Hea J.; Zhang Y. Angew. Chem., Int. Ed. 2018, 57, 17230. |
| [56] | Bai Y.; Wang H.; He J.; Zhang Y. Polym. Chem. 2021, 12, 5548. |
| [57] | Bai Y.; Wang H.; He J.; Zhang Y.; Chen E. Y.-X. Nat. Commun. 2021, 12, 4874. |
| [58] | Ge F.; Li S.; Wang Z.; Zhang W.; Wang X. Polym. Chem. 2021, 12, 4226. |
| [59] | Khan S.; Pal S.; Kathewad N.; Purushothaman I.; De S.; Parameswaran P. Chem. Commun. 2016, 52, 3880. |
| [60] | Bin Ismail M. L.; So C.-W. Chem. Commun. 2019, 55, 2074. |
/
| 〈 |
|
〉 |