REVIEWS

Construction Strategy and Imaging of Highly Selective Selenocysteine Fluorescent Probes

  • Yingzhen Zhang ,
  • Dandan Jiang ,
  • Juanhua Li ,
  • Jingjing Wang ,
  • Kunming Liu ,
  • Jinbiao Liu
Expand
  • College of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000

Received date: 2023-05-24

  Revised date: 2023-07-11

  Online published: 2023-09-21

Supported by

Jiangxi Provincial Natural Science Foundation(20212BAB203013); Science and Technology Project of the Education Department of Jiangxi Province(GJJ2200820); National College Students’ Innovation and Entrepreneurship Training Program(202110407006)

Abstract

Selenocysteine (Sec) is important in maintaining the functioning of living systems and its abnormal concentration will lead to a variety of physiological disorders. Fluorescent probes offer the advantages of high sensitivity, high spatial and temporal resolution, nondestructive and visual detection. However, the construction of highly selective selenocysteine probes for in vivo imaging is challenging due to the interference of biothiols. In recent years, various design strategies have been adopted to improve probe selectivity, accuracy and fluorescence properties. The research progress of Sec fluorescent probes in terms of design principles, performance characteristics and imaging applications based on the type of recognition mechanism is reviewed, and the challenges and development trends in this field are predicted.

Cite this article

Yingzhen Zhang , Dandan Jiang , Juanhua Li , Jingjing Wang , Kunming Liu , Jinbiao Liu . Construction Strategy and Imaging of Highly Selective Selenocysteine Fluorescent Probes[J]. Chinese Journal of Organic Chemistry, 2024 , 44(1) : 41 -53 . DOI: 10.6023/cjoc202305030

References

[1]
Schwarz, K.; Foltz, C. M. J. Am. Chem. Soc. 1957, 79, 3292.
[2]
Hassan, Z. M.; Mohammadi, F. G.; Zamaninour, N. Obes. Surg. 2019, 29, 3743.
[3]
Wu, D.; Chen, L.; Kwon, N.; Yoon, J. Chem 2016, 1, 674.
[4]
Brinkman, M.; Buntinx, F.; Muls, E.; Zeegers, M. P. Lancet Oncol. 2006, 7, 766.
[5]
Reich, H.; Hondal, R. ACS Chem. Biol. 2016, 11, 821.
[6]
Burk, R. F.; Hill, K. E. Annu. Rev. Nutr. 2015, 35, 109.
[7]
Roman, M.; Jitaru, P.; Barbante, C. Metallomics 2014, 6, 25.
[8]
Diamond, A. Nutrients 2015, 7, 3938.
[9]
Steibrenner, H.; Speckmann, B.; Klotz, L. O. Arch. Biochem. Biophys. 2016, 595, 113.
[10]
Schoenmakers, E.; Chatterjee, K. Antioxid. Redox Signaling 2020, 33, 481.
[11]
Puppala, A. K.; French, R. L.; Matthies, D.; Baxa, U.; Subramaniam, S.; Simonovi?, M. Sci. Rep. 2016, 6, 32563.
[12]
Santesmasses, D.; Gladyshev, V. N. Int. J. Mol. Sci. 2021, 22, 11593.
[13]
Vonderheide, A. P.; Montes-Bayon, M.; Caruso, J. A. Analyst 2002, 127, 49.
[14]
Liang, L.; Mo, S.; Zhang, P.; Cai, Y.; Mou, S.; Jiang, G.; Wen, M. J. Chromatogr. A 2006, 1118, 139.
[15]
Quijano, M. A.; Gutiérrez, A. M.; Pérez-Conde, M. C.; Cámara, C. J. Anal. At. Spectrom. 1996, 11, 407.
[16]
Xu, Q.; Heo, C. H.; Kim, J. A.; Lee, H. S.; Hu, Y.; Kim, D.; Swamy, K. M. K.; Kim, G.; Nam, S.-J.; Kim, H. M. Anal. Chem. 2016, 88, 6615.
[17]
Xia, S.; Wang, J.; Bi, J.; Wang, X.; Fang, M.; Phillips, T.; May, A.; Conner, N.; Tanasova, M.; Luo, F.-T. Sens. Actuators, B 2018, 265, 699.
[18]
Liu, W.; Chen, J.; Xu, Z. Coord. Chem. Rev. 2021, 429, 213638.
[19]
Hyman, L. M.; Franz, K. J. Coord. Chem. Rev. 2012, 256, 2333.
[20]
Wang, H.-S. TrAC, Trends Anal. Chem. 2016, 85, 181.
[21]
Li, J.; Zhang, Y.; Wang, P.; Yu, L.; An, J.; Deng, G.; Sun, Y.; Kim, J. S. Coord. Chem. Rev. 2021, 427, 213559.
[22]
Chen, C.; Liu, W.; Xu, C.; Liu, W. Biosens. Bioelectron. 2016, 85, 46.
[23]
Zhang, J. D.; Zhan, Y. Chin. J. Org. Chem. 2020, 40, 1847 (in Chinese).
[23]
(张继东, 詹妍, 有机化学, 2020, 40, 1847.)
[24]
Valand, R. S.; Sivaiah, A. J. Mater. Chem. 2023, 11, 2614.
[25]
Maeda, H.; Katayama, K.; Matsuno, H.; Uno, T. Angew. Chem., 2006, 118, 1842.
[26]
Zhang, B.; Ge, C.; Yao, J.; Liu, Y.; Xie, H. C.; Fang, J. G. J. Am. Chem. Soc. 2015, 137, 757.
[27]
Zhang, H.; Li, M.; Feng, W.; Feng, G. Q. Dyes Pigm. 2018, 149, 475.
[28]
Sun, Q.; Yang, S. H.; Wu, L.; Dong, Q. J.; Yang, W. C.; Yang, G. F. Anal. Chem. 2016, 88, 6084.
[29]
Zhang, P.; Ding, Y.; Liu, W.; Niu, G.; Zhang, H.; Ge, J.; Wu, J.; Li, Y.; Wang, P. Sens. Actuators, B 2018, 264, 234.
[30]
Wang, Z.; Zheng, H.; Zhang, C.; Tang, D.; Wu, Q.; Dessie, W.; Jiang, Y. Sensors 2020, 20, 4768.
[31]
Wang, Z.; Su, W.; Zheng, H.; Yang, S.; Yang, T.; Han, T.; Dessie, W.; He, X.; Jiang, Y.; Hao, Y. Spectrochim. Acta, Part A 2022, 267, 120585.
[32]
Chen, H.; Dong, B.; Tang, Y.; Lin, W. Chem.-Eur. J. 2015, 21, 11696.
[33]
Wang, Z.; Yang, S.; Liu, X.; Yang, T.; Han, T.; He, X.; Jiang, Y.; Hao, Y. Microchem. J. 2021, 170, 106681.
[34]
Feng, W. Y.; Li, M. X.; Sun, Y.; Feng, G. Q. Anal. Chem. 2017, 89, 6106.
[35]
Zhang, L.; Kai, X.; Zhang, Y.; Zheng, Y.; Xue, Y.; Yin, X.; Zhao, J. Analyst 2018, 143, 4860.
[36]
Luo, K.; Jia, M.; Xie, C.; Yang, Q.; Tan, L.; Liu, X.; Zhou, L. Sens. Actuators, B 2023, 375, 132944.
[37]
Han, X.; Wang, R.; Song, X.; Yu, F.; Chen, L. Anal. Chem. 2018, 90, 8108.
[38]
Wang, Z.; Hao, C.; Luo, X.; Wu, Q.; Zhang, C.; Dessie, W.; Jiang, Y. Molecules 2020, 25, 4768.
[39]
Zhao, M.; Shi, D.; Hu, W.; Ma, T.; He, L.; Lu, D.; Hu, Y.; Zhou, L. Spectrochim. Acta, Part A 2021, 260, 119983.
[40]
Wang, Q.; Zhang, S.; Zhong, Y.; Yang, X. F.; Li, Z.; Li, H. Anal. Chem. 2017, 89, 1734.
[41]
Dai, C. G.; Wang, J. L.; Song, Q. H. J. Mater. Chem. B 2016, 4, 6726.
[42]
Li, M.; Feng, W.; Zhai, Q.; Feng, G. Biosens. Bioelectron. 2017, 87, 894.
[43]
Zhao, X.; Yuan, G.; Ding, H.; Zhou, L.; Lin, Q. J. Hazard. Mater. 2020, 381, 120918.
[44]
Fu, Z. H.; Han, X.; Shao, Y. L.; Fang, J. G.; Zhang, Z. H.; Wang, Y. W.; Peng, Y. Anal. Chem. 2017, 89, 1937.
[45]
Tian, Y.; Xin, F.; Gao, C.; Jing, J.; Zhang, X. J. Mater. Chem. 2017, 5, 6890.
[46]
Luo, X.; Wang, R.; Lv, C.; Chen, G.; You, J.; Yu, F. Anal. Chem. 2020, 92, 1589.
[47]
Shimomura, T.; Hirakawa, N.; Ohuchi, Y.; Ishiyama, M.; Shiga, M.; Ueno, Y. ACS Sens. 2021, 6, 2125.
[48]
Han, Y. Y.; Liu, C.; Xu, H. P.; Cao, Y. Chin. J. Chem. 2022, 40, 1578.
[49]
Tian, Y.; Zhu, B. C.; Yang, W.; Jing, J.; Zhang, X. L. Sens. Actuators, B 2018, 262, 345.
[50]
Han, X.; Song, X.; Yu, F.; Chen, L. Adv. Funct. Mater. 2017, 27, 1700769.
[51]
Wang, Y.; Zhang, L. W.; Chen, L. X. Anal. Chem. 2020, 92, 1997.
[52]
Xu, K.; Qiang, M.; Gao, W.; Su, R.; Li, N.; Gao, Y.; Xie, Y.; Kong, F.; Tang, B. Chem. Sci. 2013, 4, 207890.
[53]
Kong, F.; Hu, B.; Gao, Y.; Xu, K.; Pan, X.; Huang, F.; Zheng, Q.; Chen, H.; Tang, B. Chem. Commun. 2015, 51, 3102.
Outlines

/