Chinese Journal of Organic Chemistry >
Advances in Flavin-Inspired Photocatalytic Oxidations Involving Single Electron Transfer Process
Received date: 2023-08-27
Revised date: 2023-11-03
Online published: 2023-11-15
Supported by
National Natural Science Foundation of China(21802084); National Natural Science Foundation of China(51805295); National Natural Science Foundation of China(51905304); Natural Science Foundation of Shandong Province(ZR2019BB021); Shandong Youth Innovation Program for Colleges and Universities(2022KJ181); Funding of Taishan Scholars
Natural flavin coenzymes, featuring simple structure, non-toxicity, and the ability of absorbing and utilizing visible light, frequently act as electron carriers in biological redox reactions. Inspired by the biological function of flavins, great progress has been made in the two-electron oxidation reactions catalyzed by flavins with molecular oxygen or hydrogen peroxide as the terminal oxidant over the past two decades. Due to the versatile and tunable photochemical properties of artificial flavins, in recent years, more and more interests have been drawn to the photoinduced single electron transfer reactions with biomimetic flavins, promoting the rapid developments in the corresponding organic synthetic methodologies. Herein, the advances until July 2023 in bioinspired flavins-catalyzed one-electron oxidation of organic substrates bearing aromatic rings, nitrogen-, oxygen-, and sulfur-based groups under visible-light irradiation, delivering the corresponding radical cations which subsequently take part in the following reactions and enabling various of chemical transformations, are summarized. In addition, selected substrate scopes and possible reaction mechanisms involving single electron transfer process are discussed. Meanwhile, future challenges and opportunities of flavin photocatalysis are also prospected.
Duyi Shen , Linghui Li , Ge Jing , Yujia Liang , Xinhui Zhang , Peiwei Gong , Fanjun Zhang , Mianran Chao . Advances in Flavin-Inspired Photocatalytic Oxidations Involving Single Electron Transfer Process[J]. Chinese Journal of Organic Chemistry, 2024 , 44(4) : 1069 -1093 . DOI: 10.6023/cjoc202308024
| [1] | (a) Holmberg-Douglas N.; Nicewicz D. A. Chem. Rev. 2022, 122, 1925. |
| [1] | (b) Yu X.-Y.; Chen J.-R.; Xiao W.-J. Chem. Rev. 2021, 121, 506. |
| [1] | (c) Cheung K. P. S.; Sarkar S.; Gevorgyan V. Chem. Rev. 2022, 122, 1543. |
| [1] | (d) Teegardin K.; Day J. I.; Chan J.; Weaver J. Org. Process Res. Dev. 2016, 20, 1156. |
| [1] | (e) Shaw M. H.; Twilton J.; MacMillan D. W. C. J. Org. Chem. 2016, 81, 6898. |
| [2] | (a) Srivastava V.; Singh P. K.; Tivaria S.; Singh P. P. Org. Chem. Front. 2022, 9, 1485. |
| [2] | (b) Pitre S. P.; Overman L. E. Chem. Rev. 2022, 122, 1717. |
| [2] | (c) Sun C.-L.; Shi Z.-J. Chem. Rev. 2014, 114, 9219. |
| [3] | (a) Romero N. A.; Nicewicz D. A. Chem. Rev. 2016, 116, 10075. |
| [3] | (b) Sideri I. K.; Voutyritsa E.; Kokotos C. G. Org. Biomol. Chem. 2018, 16, 4596. |
| [3] | (c) Fukuzumi S.; Ohkubo K. Org. Biomol. Chem. 2014, 12, 6059. |
| [4] | (a) Lechner H.; Oberdorfer G. ChemBioChem 2022, 23, e202100599. |
| [4] | (b) Liang Y.; Wei J.; Qiu X.; Jiao N. Chem. Rev. 2018, 118, 4912. |
| [5] | (a) Romero E.; Castellanos J. R. G.; Gadda G.; Fraaije M. W.; Mattevi A. Chem. Rev. 2018, 118, 1742. |
| [5] | (b) Silva E.; Edwards A. M. Flavins: Photochemistry and Photobiology, The Royal Society of Chemistry, Cambridge, 2002. |
| [6] | Ghisla S.; Kenney W. C.; Knappe W. R.; McIntire W.; Singer T. P. Biochemistry 1980, 19, 2537. |
| [7] | (a) K?nig B.; Kümmel S.; Svobodová E.; Cibulka R. Phys. Sci. Rev. 2018, 3, 20170168. |
| [7] | (b) Cibulka R.; Fraaije M. W. Flavin-Based Catalysis: Principles and Applications, Wiley-VCH GmbH, Weinheim, 2021. |
| [8] | Fukuzumi S.; Yasui K.; Suenobu T.; Ohkubo K.; Fujitsuka M.; Ito O. J. Phys. Chem. A 2001, 105, 10501. |
| [9] | Emmanuel M. A.; Bender S. G.; Bilodeau C.; Carceller J. M.; DeHovitz J. S.; Fu H.; Liu Y.; Nicholls B. T.; Ouyang Y.; Page C. G.; Qiao T.; Raps F. C.; Sorigué D. R.; Sun S.-Z.; Turek-Herman J.; Ye Y.; Rivas-Souchet A.; Cao J.; Hyster T. K. Chem. Rev. 2023, 123, 5459. |
| [10] | (a) Litman Z. C.; Wang Y.; Zhao H.; Hartwig J. F. Nature 2018, 560, 355. |
| [10] | (b) Huang X.; Wang B.; Wang Y.; Jiang G.; Feng J.; Zhao H. Nature 2020, 584, 69. |
| [10] | (c) Harrison W.; Huang X.; Zhao H. Acc. Chem. Res. 2022, 55, 1087. |
| [11] | (a) Oelgemo?ller M. Chem. Rev. 2016, 116, 9664. |
| [11] | (b) Ding W.; Lu L.‐Q.; Xiao W.‐J. In Green Oxidation in Organic Synthesis, 1st ed., Eds.: Jiao, N.; Stahl, S. S., John Wiley & Sons Ltd., Hoboken, NJ, 2019. |
| [12] | (a) Rehpenn A.; Walte A.; Storch G. Synthesis 2021, 53, 2583. |
| [12] | (b) de Gonzalo G.; Fraaije M. W. ChemCatChem 2013, 5, 403. |
| [12] | (c) Iida H.; Imada Y.; Murahashi S.-I. Org. Biomol. Chem. 2015, 13, 7599. |
| [12] | (d) Cibulka R. Eur. J. Org. Chem. 2015, 2015, 915. |
| [13] | Srivastava V.; Singh P. K.; Srivastava A.; Singh P. P. RSC Adv. 2021, 11, 14251. |
| [14] | Fukuzumi S.; kuroda S.; Tanak T. Chem. Lett. 1984, 417. |
| [15] | Fukuzumi S.; Kuroda S.; Tanaka T. Chem. Lett. 1984, 1375. |
| [16] | Fukuzumi S.; Kuroda S.; Tanaka T. J. Am. Chem. Soc. 1985, 107, 3020. |
| [17] | (a) Fukuzumi S.; Kojima T. J. Biol. Inorg. Chem. 2008, 13, 321. |
| [17] | (b) Fukuzumi S.; Ohkubo K. Coord. Chem. Rev. 2010, 254, 372. |
| [17] | (c) Fukuzumi S.; Jung J.; Lee Y.-M.; Nam W. Asian J. Org. Chem. 2017, 6, 397. |
| [18] | Mühldorf B.; Wolf R. Chem. Commun. 2015, 51, 8425. |
| [19] | Fukuzumi S.; Tanii K.; Tanaka T. J. Chem. Soc., Chem. Commun. 1989, 816. |
| [20] | Mühldorf B.; Wolf R. ChemCatChem 2017, 9, 920. |
| [21] | Zelenka J.; Svobodová E.; Tarábek J.; Hoskovcová I.; Bogus- chová V.; Bailly S.; Sikorski M.; Roithová J.; Cibulka R. Org. Lett. 2019, 21, 114. |
| [22] | Tolba A. H.; Vávra F.; Chudoba J.; Cibulka R. Eur. J. Org. Chem. 2020, 2020, 1579. |
| [23] | Pokluda A.; Anwar Z.; Boguschová V.; Anusiewicz I.; Skurski P.; Sikorski M.; Cibulka R. Adv. Synth. Catal. 2021, 363, 4371. |
| [24] | Graml A.; Nevesely T.; Kutta R. J.; Cibulka R.; K?nig B. Nat. Commun. 2020, 11, 3174. |
| [25] | Obertík R.; Chudoba J.; ?turala J.; Tarábek J.; Ludvíková L.; Slanina T.; K?nig B.; Cibulka R. Chem.-Eur. J. 2022, 28, e202202487. |
| [26] | Lechner R.; Kümmel S.; K?nig B. Photochem. Photobiol. Sci. 2010, 9, 1367. |
| [27] | Taeufer T.; Cordero M. A. A.; Petrosyan A.; Surkus A.-E.; Lochbrunner S.; Pospech J. ChemPhotoChem 2021, 5, 999. |
| [28] | (a) El-Hage F.; Sch?ll C.; Pospech J. J. Org. Chem. 2020, 85, 13853. |
| [28] | (b) Taeufer T.; Hauptmann R.; El-Hage F.; Mayer T. S.; Jiao H.; Rabeah J.; Pospech J. ACS Catal. 2021, 11, 4862. |
| [29] | Aleksander V. Mini-Rev. Org. Chem. 2017, 14, 204. |
| [30] | Shen D.; Zhong F.; Li L.; Zhang H.; Ren T.; Sun C.; Wang B.; Guo M.; Chao M.; Fukuzumi S. Org. Chem. Front. 2023, 10, 2653. |
| [31] | Du?sel S. J. S.; Ko?nig B. J. Org. Chem. 2018, 83, 2802. |
| [32] | Badenock J. C. Radical Reactions of Indole In Heterocyclic Scaffolds II: Topics in Heterocyclic Chemistry, Vol. 26, Ed.: Gribble, G., Springer, Berlin, 2010. |
| [33] | Immel J. R.; Alghafli B. M.; Ugalde A. A. R.; Bloom S. Org. Lett. 2023, 25, 3818. |
| [34] | (a) Weinberg D. R.; Gagliardi C. J.; Hull J. F.; Murphy C. F.; Kent C. A.; Westlake B. C.; Paul A.; Ess D. H.; McCafferty D. G.; Meyer T. J. Chem. Rev. 2012, 112, 4016. |
| [34] | (b) Tyburski R.; Liu T.; Glover S. D.; Hammarstro?m L. J. Am. Chem. Soc. 2021, 143, 560. |
| [35] | Adenier A.; Chehimi M. M.; Gallardo I.; Pinson J.; Vila N. Langmuir 2004, 20, 8243. |
| [36] | Bertolotti S. G.; Previtali C. M.; Rufs A. M.; Encinas M. V. Macromolecules 1999, 32, 2920. |
| [37] | Porcal G.; Bertolotti S. G.; Previtali C. M.; Encinas M. V. Phys. Chem. Chem. Phys. 2003, 5, 4123. |
| [38] | Martinez-Haya R.; Miranda M. A.; Marin M. L. Eur. J. Org. Chem. 2017, 2017, 2164. |
| [39] | Tagami T.; Arakawa Y.; Minagawa K.; Imada Y. Org. Lett. 2019, 21, 6978. |
| [40] | Brown D. G.; Bostr?m J. J. Med. Chem. 2016, 59, 4443. |
| [41] | Tolba A. H.; Krupicka M.; Chudoba J.; Cibulka R. Org. Lett. 2021, 23, 6825. |
| [42] | Wu M.; Jiang Q.; Tian Q.; Guo T.; Cai F.; Tang S.; Liu J.; Wang X. CCS Chem. 2022, 4, 3599. |
| [43] | (a) Wu Y.; Zhou G.; Meng Q.; Tang X.; Liu G.; Yin H.; Zhao J.; Yang F.; Yu Z.; Luo Y. J. Org. Chem. 2018, 83, 13051. |
| [43] | (b) Luo K.; Yu X.; Chen P.; He K.; Lin J.; Jin Y. Tetrahedron Lett. 2020, 61, 151578. |
| [43] | (c) Zhang Y.; Yang X.; Tang H.; Liang D.; Wu J.; Huang D. Green Chem. 2020, 22, 22. |
| [44] | Shen D.; Ren T.; Luo Z.; Sun F.; Han Y.; Chen K.; Zhang X.; Zhou M.; Gong P.; Chao M. Org. Biomol. Chem. 2023, 21, 4955. |
| [45] | (a) Marin M. L.; Santos-Juanes L.; Arques A.; Amat A. M.; Miranda M. A. Chem. Rev. 2012, 112, 1710. |
| [45] | (b) Pavanello A.; Miranda M. A.; Marin M. L. Chem. Eng. J. Adv. 2022, 11, 100296. |
| [46] | (a) Krylov I. B.; Vil’ V. A.; Terent’ev A. O. Beilstein J. Org. Chem. 2015, 11, 92. |
| [46] | (b) Li M.; Hong J.; Xiao W.; Yang Y.; Qiu D.; Mo F. ChemSusChem 2020, 13, 1661. |
| [47] | Bloom S.; Liu C.; K?lmel D. K.; Qiao J. X.; Zhang Y.; Poss M. A.; Ewing W. R.; MacMillan D. W. C. Nat. Chem. 2018, 10, 205. |
| [48] | Sakakibara Y.; Murakami K. ACS Catal. 2022, 12, 1857. |
| [49] | Morack T.; Metternich J. B.; Gilmour R. Org. Lett. 2018, 20, 1316. |
| [50] | Ramirez N. P.; Ko?nig B.; Gonzalez-Gomez J. C. Org. Lett. 2019, 21, 1368. |
| [51] | Ramirez N. P.; Lana-Villarreal T.; Gonzalez-Gomez J. C. Eur. J. Org. Chem. 2020, 2020, 1539. |
| [52] | Zhang B.; Wu H.; Li S.; Liu Y.; Du P.; Wang Z.-G. ACS Catal. 2023, 13, 6763. |
| [53] | (a) Ji H.-F.; Shen L. J. Mol. Struct.: THEOCHEM 2008, 865, 25. |
| [53] | (b) Shen L.; Ji H.-F. J. Photochem. Photobiol. A 2008, 199, 119. |
| [53] | (c) Ji H.-F.; Shen L. J. Mol. Struct.: THEOCHEM 2008, 862, 148. |
| [54] | Roche S. P.; Porco J. A. Jr. Angew. Chem., Int. Ed. 2011, 50, 4068. |
| [55] | Dockrey S. A. B.; Narayan A. R. H. Org. Lett. 2020, 22, 3712. |
| [56] | Skolia E.; Gkizis P. L.; Kokotos C. G. ChemPlusChem 2022, 87, e202200008. |
| [57] | (a) Dad’ová J.; Svobodová E.; Sikorski M.; Ko?nig B.; Cibulka R. ChemCatChem 2012, 4, 620. |
| [57] | (b) Nevesely T.; Svobodová E.; Chudoba J.; Sikorski M.; Cibulka R. Adv. Synth. Catal. 2016, 358, 1654. |
| [58] | Bouchet L. M.; Heredia A. A.; Argu?ello J. E.; Schmidt L. C. Org. Lett. 2020, 22, 610. |
| [59] | Arakawa Y.; Mihara T.; Fujii H.; Minagawa K.; Imada Y. Chem. Commun. 2020, 56, 5661. |
| [60] | Kim Y.; Ho S. O.; Gassman N. R.; Korlann Y.; Landorf E. V.; Collart F. R.; Weiss S. Bioconjugate Chem. 2008, 19, 786. |
| [61] | Kim J.; Li B. X.; Huang R. Y.-C.; Qiao J. X.; Ewing W. R.; MacMillan D. W. C. J. Am. Chem. Soc. 2020, 142, 21260. |
| [62] | (a) Fletcher S. Org. Chem. Front. 2015, 2, 739. |
| [62] | (b) Beddoe R. H.; Andrews K. G.; Magné V.; Cuthbertson J. D.; Saska J.; Shannon-Little A. L.; Shanahan S. E.; Sneddon H. F.; Denton R. M. Science 2019, 365, 910. |
| [63] | M?rz M.; Kohout M.; Nevesely T.; Chudoba J.; Pruka?a D.; Niziński S.; Sikorski M.; Burdziński G.; Cibulka R. Org. Biomol. Chem. 2018, 16, 6809. |
| [64] | (a) Yan M.; Lo J. C.; Edwards J. T.; Baran P. S. J. Am. Chem. Soc. 2016, 138, 12692. |
| [64] | (b) Romero K. J.; Galliher M. S.; Pratt D. A.; Stephenson C. R. J. Chem. Soc. Rev. 2018, 47, 7851. |
| [65] | Chilamari M.; Immel J. R.; Bloom S. ACS Catal. 2020, 10, 12727. |
| [66] | (a) Lu C.; Yao S.; Han Z.; Lin W.; Wang W.; Zhang W.; Lin N. Biophys. Chem. 2000, 85, 17. |
| [66] | (b) Chen W.; Chen J.-J.; Lu R.; Qian C.; Li W.-W.; Yu H.-Q. Bioelectrochemistry 2014, 98, 103. |
| [67] | Du P.; Shen Y.; Zhang B.; Li S.; Gao M.; Wang T.; Ding X.; Yu B.; Wang Z.-G.; Xu F.-J. Adv. Sci. 2023, 10, 2206851. |
/
| 〈 |
|
〉 |