REVIEWS

Research Progress on Anion-π Interactions

  • Xiao Zhang ,
  • Mixia Hu ,
  • Yanqing Du ,
  • Fengying Liang ,
  • Xiaoying Zhang ,
  • Chaolu Eerdun
Expand
  • College of Pharmacy, Inner Mongolia Medical University, Hohhot 010110

Received date: 2023-08-04

  Revised date: 2023-11-06

  Online published: 2023-11-23

Supported by

National Natural Science Foundation of China(21961026); Construction of First-class Disciplines in Mongolian Pharmacy (International Cooperation and Exchange Programme); Construction of First-class Disciplines in Mongolian Pharmacy(MYYXTGJ202304)

Abstract

Anion-π interaction is a non-covalent interaction in host-guest chemistry. In general, aromatic π-systems are regarded as electron rich and may have repulsive interactions with negatively charged systems. Therefore, the anion-π interaction, which seems counterintuitive, has attracted remarkable attention since it was first reported. And surprisingly, it has shown broad and significant potential applications in various fields, including molecular recognition, catalysis, self-assembly, aggregation-induced luminescent materials, and the design and synthesis of novel anionic receptors. This review focuses on the research progress of anion-π interactions in the fields of theoretical studies, catalysis, self-assembly, receptor design and synthesis, and aggregation-induced luminescence in the last decade. Finally, the research and application prospects of anion-π interactions in the field of supramolecular chemistry will be provided.

Cite this article

Xiao Zhang , Mixia Hu , Yanqing Du , Fengying Liang , Xiaoying Zhang , Chaolu Eerdun . Research Progress on Anion-π Interactions[J]. Chinese Journal of Organic Chemistry, 2024 , 44(4) : 1181 -1196 . DOI: 10.6023/cjoc202308003

References

[1]
Giese M.; Albrecht M.; Rissanen K. Chem. Rev. 2015, 115, 8867.
[2]
Evans N. H.; Beer P. P. Angew. Chem., Int. Ed. 2014, 53,11716.
[3]
Schneider H. J. In Ionic Interactions in Supramolecular Complexes, Vol. 2, Eds.: Alberto, C.; Angelo, P., Wiley, New York, 2012, p. 35.
[4]
Marcus Y. In Ionic Interactions in Natural and Synthetic Macromolecules, Eds.: Ciferri, A.; Perico, A., Wiley, New York, 2012, p. 1.
[5]
Zhu Y.-J.; Tang M.-M.; Zhang H.-B.; Rahman F. U.; Ballester P.; Rebek J., Jr; Hunter, C. A.; Yu, Y. J. Am. Chem. Soc. 2021, 143, 12397.
[6]
Beer P. D.; Gale P. A. Angew. Chem., Int. Ed. 2001, 40, 486.
[7]
Zapata F.; Benítez-Benítez S. J.; Sabater P.; Caballero A.; Molina P. Molecules 2017, 22, 2273.
[8]
Athare S. V.; Gejji S. P. ChemistrySelect 2019, 4, 9354.
[9]
Haldar C.; Hoque M. E.; Bisht R.; Chattopadhyay B. Tetrahedron Lett. 2018, 59, 1269.
[10]
Yang Z.; Li X.-Y.; Yang K.; Yu N.; Gao R.; Ren Y. J. Org. Chem. 2023, 88, 2792.
[11]
Guo J.-J.; Guo M.-J. Chin. J. Org. Chem. 2021, 41, 2946. (in Chinese)
[11]
(郭京京, 郭敏捷, 有机化学, 2021, 41, 2946.)
[12]
Li J.; Han Y.; Chen C.-F. Chin. J. Org. Chem. 2020, 40, 3714. (in Chinese)
[12]
(李晶, 韩莹, 陈传峰, 有机化学, 2020, 40, 3714.)
[13]
He Q.; Zuniga V.; Kim S. H.; Kim S. K. Sessler J. L. Chem. Rev. 2019, 119, 9753.
[14]
Pinheiro S.; Soteras I.; Gelpi J. L.; Dehez F.; Chipot C.; Luque F. J.; Curutchet C. Phys. Chem. Chem. Phys. 2017, 19, 9849.
[15]
Yamada S. J. Chem. Rev. 2018, 118, 11353.
[16]
Quinonero D.; Garau C.; Rotger C.; Frontera A.; Ballester P.; Costa A.; Deya P. M. Angew. Chem., Int. Ed. 2002, 41, 3389.
[17]
Mascal M.; Armstrong A.; Bartberger M. D. J. Am. Chem. Soc. 2002, 124, 6274.
[18]
Hoog P. D.; Gamez P.; Mutikainen I.; Turpeinen U.; Reedijk J. Angew. Chem., Int. Ed. 2004, 43,5815.
[19]
Qin H.-M.; Jiang J.; Sun X.-X.; Lin N.; Yang P.-F.; Chen Y. Inorg. Chem. 2023, 62, 6458.
[20]
Tan M.-L.; Lopez M. A. G.; Sakai N.; Matile S.; Angew. Chem., Int. Ed. 2023, 62, e202310393.
[21]
Odubo F. E.; Zeller M.; Rosokha S. V. J. Phys. Chem. A 2023, 127, 5851.
[22]
Liu L.-X.; Li C.-B.; Gong J.-Y.; Zhang Y.; Ji W.-W.; Feng L.-N.; Jiang G.-Y.; Wang J.-G.; Tang B.-Z. Angew. Chem., Int. Ed. 2023, e202307776.
[23]
(a) Wu X.; Wang P.; Lewis W.; Jiang Y.-B.; Gale P. A. Nat. Commun. 2022, 13, 4623.
[23]
(b) Saha P.; Madhavan N. Org. Lett. 2020, 22, 5104.
[24]
Hohenberg P.; Kohn W. Phys. Rev. 1964, 136, B864.
[25]
Kohn W.; Sham L. J. Phys. Rev. 1965, 140, A1133.
[26]
Bader R. F. W.; Matta C. F. Found. Chem. 2013, 15, 253.
[27]
Thirman J.; Head-Gordon M. J. Phys. Chem. A 2017, 121, 717.
[28]
Liu Y.-Z.; Yuan K.; Yuan Z.; Zhu Y.-C.; Lv L.-L. RSC Adv. 2016, 6, 14666.
[29]
Reilly A. M.; Tkatchenko A. Chem. Sci. 2015, 6, 3289.
[30]
Wang D.-X.; Wang M.-X. Acc. Chem. Res. 2020, 53, 1364.
[31]
Frontera A.; Gamez P.; Mascal M.; Mooibroek T. J.; Reedijk J. Angew. Chem., Int. Ed. 2011, 50, 9564.
[32]
Berryman O. B.; Bryantsev V. S.; Stay D. P.; Johnson D. W.; Hay B. P. J. Am. Chem. Soc. 2007, 129, 48.
[33]
Hay B. P.; Bryantsev V. S. Chem. Commun. 2008, 7; 2417.
[34]
Masoodi H. R.; Pourhosseini R. S.; Bagheri S. Comput. Theor. Chem. 2023, 1220, 114022.
[35]
Quinonero D.; Frontera A.; Garau C.; Ballester P.; Costa A.; Deya P. M. ChemPhysChem 2006, 7, 2487.
[36]
Garau C.; Quinonero D.; Frontera A.; Ballester P.; Costa A.; Deya P. M. New J. Chem. 2003, 27, 211.
[37]
Li Z.-F.; Li H.-X.; Yang X.-P. Phys. Chem. Chem. Phys. 2014, 16, 25876.
[38]
Anstoter C.; Rogers J. P.; Verlet J. R. R. J. Am. Chem. Soc. 2019, 141, 6132.
[39]
Liu Z.-Y.; Chen Z.; Xu X. CCS Chem. 2020, 2, 904.
[40]
Liu Z.-X.; Chen Z.; Xi J.-Y.; Xu X. Natl. Sci. Rev. 2020, 7, 1036.
[41]
Liu Z.-Y.; Chen Z.; Xu X. Chin. J. Chem. Phys. 2020, 33, 285.
[42]
Fan X.-Z.; Liu X.; He Z.-L.; Zhu K.-Y.; Shi G.-S. J. Mol. Model 2022, 28, 225.
[43]
Tuo D.-H.; Ao Y.-F.; Wang Q.-Q.; Wang D.-X. CCS Chem. 2022, 4, 2806.
[44]
Salonen M. S. L. M.; Ellermann M.; Diederich F. Angew. Chem., Int. Ed. 2011, 50, 4808.
[45]
Quinonero D.; Frontera A.; Escudero D.; Ballester P.; Costa A.; Daya P. M. ChemPhysChem 2007, 8, 1182.
[46]
Chen T.-W.; Wang L.-Y.; Li S.-Y.; Dong L.-C.; Tan L.-X. Org. Lett. 2023, 25, 5774.
[47]
Giese M.; Albrecht M.; Rissanen K. Chem. Commun. 2016, 52, 1778.
[48]
Murata C.; Shin J.; Konishi K. Chem. Commun. 2023, 59, 2441.
[49]
Park C. H.; Simmons H. E. J. Am. Chem. Soc. 1968, 90, 2431.
[50]
Maeda H.; Haketa Y.; Murata T.; Ohta E.; Marata T.; Yasuda N. Org. Biomol. Chem. 2021, 19, 7369.
[51]
Wang D.-X.; Wang Q.-Q.; Han Y.-C.; Wang Y.-L.; Huang Z.-T.; Wang M.-X. Chem.-Eur. J. 2010, 16, 13053.
[52]
Liu W.; Wang Q.-Q.; Wang Y.-Y.; Huang Z.-T.; Wang D.-X. RSC Adv. 2014, 4, 9339.
[53]
Tuo D.-H.; Liu W.; Wang X.-Y.; Wang X.-D.; Ao F.-Y.; Wang Q.-Q.; Li Z.-Y.; Wang D.-X. J. Am. Chem. Soc. 2019, 141, 1118.
[54]
(a) Wang X.-Y.; Zhu J.; Wang Q.-Q.; Ao Y.-F.; Wang D.-X. Inorg. Chem. 2019, 58, 5980.
[54]
(b) Rather I. A.; Wagay S. A.; Ali R. Coord. Chem. Rev. 2020, 415, 213327.
[55]
Wang D.-X.; Wang M.-X. J. Am. Chem. Soc. 2013, 135, 892.
[56]
He Q.; Ao Y.-F.; Huang Z.-T.; Wang D.-X. Angew. Chem., Int. Ed. 2015, 54, 11785.
[57]
Li Z.-Y.; Li C.-L.; Li P.; Zuo Y.; Liu X.-N.; Xu S.-J.; Zou L.-Y. Zhuang Q.-X.; Gao S.; Liu X.-Y.; Zhang S.-D. ChemPlusChem 2020, 85, 906.
[58]
Li Y.-J.; Huang, T-T.; Liu, J.; Xie, Y.-Q.; Shi, B.-B.; Zhang, Y.-M.; Yao, H.; Wei, T-B.; Lin, Q. ACS Sustainable Chem. Eng. 2022, 10, 7907.
[59]
Ballester P.; Scarso A. Front. Chem. 2019, 7, 174.
[60]
Zhao Y.-J.; Cotelle Y.; Liu L.; Lopez-Andarias J.; Bornhof A.-B.; Akamatsu M.; Sakai N.; Matile S. Acc. Chem. Res. 2018, 51, 2255.
[61]
Neel A. J.; Hilton M. J.; Sigman M. S.; Toste F. D. Nature 2017, 543, 637.
[62]
Zhao Y.-J.; Domoto Y. Y.; Orentas E.; Beuchat C.; Emery D.; Mareda J.; Sakai N.; Matile S. Angew. Chem., Int. Ed. 2013, 52, 9940.
[63]
Zhao Y.-J.; Sakai N.; Matile S. Nat. Commun. 2014, 5, 3911.
[64]
Bornhof A.-B.; Bauza A.; Aster A.; Pupier M.; Frontera A.; Vauthey E.; Skai N.; Matile. S. J. Am. Chem. Soc. 2018, 140, 4884.
[65]
Cotelle Y.; Benz S.; Avestro A. J.; Ward T. R.; Sakai N.; Matile S. Angew. Chem., Int. Ed. 2016, 55, 4275.
[66]
Wang C.; Miros F. N.; Mareda J.; Sakai N.; Matile S. Angew. Chem., Int. Ed. 2016, 55, 14422.
[67]
Buglioni L.; Mastandrea M. M.; Frontera A.; Pericas M. A. Chem.-Eur. J. 2019, 25, 11785.
[68]
Lopez-Andarias J.; Frontera A.; Matile S. J. Am. Chem. Soc. 2017, 139, 13296.
[69]
Bornhof A.-B.; Vazquez-Nakagawa M.; Rodrigue-Perez L.; Herranz M. A.; Sakai N.; Martin N.; Matile S.; Lopez-Andarias J. Angew. Chem., Int. Ed. 2019, 58, 16097.
[70]
Liu L.; Cotelle Y.; Bornhof A.-B.; Besnard C.; Sakai N.; Matile S. Angew. Chem., Int. Ed. 2017, 56, 13066.
[71]
Luo N.; Ao Y.-F.; Wang D.-X.; Wang Q.-Q. Angew. Chem., Int. Ed. 2021, 60, 20650.
[72]
Molina P.; Zapata F.; Caballero A. Chem. Rev. 2017, 117, 9907.
[73]
Chang Y.-X.; Li B.; Guo M.; Cai Y.-H.; Xu K.-X. Chin. J. Org. Chem. 2019, 39, 2485. (in Chinese)
[73]
(常永新, 李白, 郭淼, 蔡永红, 徐括喜, 有机化学, 2019, 39, 2485.)
[74]
Kaur N.; Kaur G.; Fegade U. A.; Singh A.; Sahoo S. K.; Kuwar A. S.; Singh N. TrAC, Trends Anal. Chem. 2017, 95, 86.
[75]
Xiao L.-W.; Ren P.; Jing X.-M.; Ren L.-L.; Li Z.; Dai F.-C. Chin. J. Org. Chem. 2017, 37, 3085. (in Chinese)
[75]
(肖立伟, 任萍, 景学敏, 任丽磊, 李政, 戴富才, 有机化学, 2017, 37, 3085.)
[76]
Kim D.; Tarakeshwar P.; Kim K. S. J. Phys. Chem. A 2004, 108, 1250.
[77]
Kan X.-N.; Liu H.; Pan Q.-Y.; Li Z.-B.; Zhao Y.-J. Chin. Chem. Lett. 2018, 29, 261.
[78]
Mascal M. Angew. Chem., Int. Ed. 2006, 45, 2890.
[79]
Guo Q.-H.; Fu Z.-D.; Zhao L.; Wang M.-X. Angew. Chem., Int. Ed. 2014, 53, 13548.
[80]
Plais R.; Boufroura H.; Gouarin G.; Gaucher A.; Haldys V.; Brosseau A.; Clavier G.; Salpin J. Y.; Prim D. RSC Adv. 2021, 11, 9476.
[81]
Plais R.; Gouarin G.; Bournier A.; Zayene O.; Mussard V.; Bourdreux F.; Marrot J.; Brosseau A.; Gaucher A.; Clavier G.; Salpin J. Y.; Prim D. ChemPhysChem 2023, 24, e202200524.
[82]
Huang W.-L.; Wang X.-D.; Li S.; Zhang R.; Ao Y.-F.; Tang J.; Wang Q.-Q.; Wang D.-X. J. Org. Chem. 2019, 84, 8859.
[83]
Malenov D. P.; Zaric S. D. Chem.-Eur. J. 2021, 27, 17862.
[84]
Eytel L. M.; Gibert A. K.; Gorner P.; Zakharov L. N.; Johnson D. W.; Haley M. M. Chem.-Eur. J. 2017, 23, 4051.
[85]
Luo J.; Zhu J.; Tuo D.-H.; Yuan Q.-Q.; Wang L.; Wang X.-B.; Ao F.-Y.; Wang Q.-Q.; Wang D.-X. Chem.-Eur. J. 2019, 25, 13275.
[86]
Zeng H.; Liu P.-R.; Feng G.-Q.; Huang F.-H. J. Am. Chem. Soc. 2019, 141, 16501.
[87]
Yang H.-H.; Liu P.-P.; Hu J.-P.; Fang H.; Lin Q.; Hong Y.; Zhang Y.-M.; Qu W.-J.; Wei T.-B. Soft Matter 2020, 16, 9876.
[88]
Orenha R. P.; Silva V. B. D.; Caramori G. F.; Piotrowski M. J.; Nagurniak G. R.; Parreira R. L. Phys. Chem. Chem. Phys. 2021, 23, 11455.
[89]
Queizan M.; Sanchez-Lozano M.; Mandado M.; Hermida-Ramon J. M. H. J. Chem. Inf. Model. 2021, 61, 4455.
[90]
Li W.-C.; Qin P.; Zhao X.-X.; Qu W.-J.; Lin Q.; Yao H.; Wei T.-B.; Zhang Y.-M.; Liu Y.-Z.; Shi B.-B. Org. Biomol. Chem. 2022, 20, 9122.
[91]
Guo S.-Y.; Tong S.; Guo Q.-H.; Wang M.-X. Org. Chem. Front. 2023, 10, 1405.
[92]
Luo J.-D.; Xie Z.-L.; Lam J. W. Y.; Cheng L.; Chen H.-Y.; Qiu C.-F.; Kwok H. S.; Zhan X.-W.; Liu Y.-Q.; Zhu D.-B.; Tang B.-Z. Chem. Commun. 2001, 1740.
[93]
Jiang G.-Y.; Wang J.-G.; Tang B.-Z. ChemMedChem 2023, 18, e202200697.
[94]
Tian X.-Q.; Zuo M.-Z.; Niu P.-B.; Wang K.-Y.; Hu X.-Y. Chin. J. Org. Chem. 2020, 40, 1823. (in Chinese)
[94]
(田雪琪, 左旻瓒, 牛蓬勃, 王开亚, 胡晓玉, 有机化学, 2020, 40, 1823.)
[95]
Wang J.-G.; Gu X.-G.; Zhang P.-F.; Huang X.-B.; Zheng X.-Y.; Chen M.; Feng H.-T.; Kwok R. T. K.; Lam J. W. Y.; Tang B.-Z. J. Am. Chem. Soc. 2017, 139, 16974.
[96]
Nie H.; Hu K.; Cai Y.-J.; Peng Q.; Zhao Z.-J.; Hu R.-R.; Chen J.-W.; Su S.-J.; Qin A.-J.; Tang B.-Z. Mater. Chem. Front. 2017, 1, 1125.
[97]
Bolle P.; Cheret Y.; Roiland C.; Sanguinet L.; Faulques E.; Serier-Brault H.; Bouit P. A.; Hissler M.; Dessapt R. Chem.-Asian J. 2019, 14, 1642.
[98]
Jiang G.-Y.; Yu J.; Wang J.-G.; Tang B.-Z. Aggregate 2022, 3, e285.
[99]
Lin Q.; Gong G.-F.; Fan Y.-Q.; Chen Y.-Y.; Wang J.; Guan X.-W.; Liu J.; Zhang Y.-M.; Yao H.; Wei T.-B. Chem. Commun. 2019, 55, 3247.
[100]
Gong G.-F.; Chen Y.-Y.; Zhang Y.-M.; Fan Y.-Q.; Zhou Q.; Yang H.-L.; Zhang Q.-P.; Yao H.; Wei T.-B.; Lin Q. Soft Matter 2019, 15, 6348.
[101]
Gong G.-F.; Chen Y.-Y.; Zhang Y.-M.; Fan Y.-Q.; Zhao Q.; An J.-N.; Yao H.; Wei T.-B.; Lin Q. ACS Sustainable Chem. Eng. 2020, 8, 5831.
[102]
Kim S.; Kim J.; Lee D. Angew. Chem., Int. Ed. 2021, 60, 10858.
[103]
Li Q.-Y.; Gong J.-Y.; Li Y.; Zhang R.-Y.; Wang H.-R.; Zhang J.-Q.; Yan H.; Lam J. W. Y.; Sung H. H. Y.; Williams L. D.; Kwok R. T. K.; Li M.-H.; Wang J.-G.; Tang B.-Z. Chem. Sci. 2021, 12, 709.
[104]
Chen K.-Q.; Li G.-G.; Zhang H.; Wu H.-Z.; Li Y.; Li Y.-X.; Wang Z.-M.; Tang B.-Z. Chem. Eng. J. 2022, 433, 133646.
[105]
Jiang G.-Y.; Hu R.; Li C.-B.; Gong J.-Y.; Wang J.-G.; Lam J. W. Y.; Qin A.-J.; Tang B.-Z. Chem.-Eur. J. 2022, 28, e202202388.
Outlines

/