Chinese Journal of Organic Chemistry >
Research Progress on Anion-π Interactions
Received date: 2023-08-04
Revised date: 2023-11-06
Online published: 2023-11-23
Supported by
National Natural Science Foundation of China(21961026); Construction of First-class Disciplines in Mongolian Pharmacy (International Cooperation and Exchange Programme); Construction of First-class Disciplines in Mongolian Pharmacy(MYYXTGJ202304)
Anion-π interaction is a non-covalent interaction in host-guest chemistry. In general, aromatic π-systems are regarded as electron rich and may have repulsive interactions with negatively charged systems. Therefore, the anion-π interaction, which seems counterintuitive, has attracted remarkable attention since it was first reported. And surprisingly, it has shown broad and significant potential applications in various fields, including molecular recognition, catalysis, self-assembly, aggregation-induced luminescent materials, and the design and synthesis of novel anionic receptors. This review focuses on the research progress of anion-π interactions in the fields of theoretical studies, catalysis, self-assembly, receptor design and synthesis, and aggregation-induced luminescence in the last decade. Finally, the research and application prospects of anion-π interactions in the field of supramolecular chemistry will be provided.
Xiao Zhang , Mixia Hu , Yanqing Du , Fengying Liang , Xiaoying Zhang , Chaolu Eerdun . Research Progress on Anion-π Interactions[J]. Chinese Journal of Organic Chemistry, 2024 , 44(4) : 1181 -1196 . DOI: 10.6023/cjoc202308003
| [1] | Giese M.; Albrecht M.; Rissanen K. Chem. Rev. 2015, 115, 8867. |
| [2] | Evans N. H.; Beer P. P. Angew. Chem., Int. Ed. 2014, 53,11716. |
| [3] | Schneider H. J. In Ionic Interactions in Supramolecular Complexes, Vol. 2, Eds.: Alberto, C.; Angelo, P., Wiley, New York, 2012, p. 35. |
| [4] | Marcus Y. In Ionic Interactions in Natural and Synthetic Macromolecules, Eds.: Ciferri, A.; Perico, A., Wiley, New York, 2012, p. 1. |
| [5] | Zhu Y.-J.; Tang M.-M.; Zhang H.-B.; Rahman F. U.; Ballester P.; Rebek J., Jr; Hunter, C. A.; Yu, Y. J. Am. Chem. Soc. 2021, 143, 12397. |
| [6] | Beer P. D.; Gale P. A. Angew. Chem., Int. Ed. 2001, 40, 486. |
| [7] | Zapata F.; Benítez-Benítez S. J.; Sabater P.; Caballero A.; Molina P. Molecules 2017, 22, 2273. |
| [8] | Athare S. V.; Gejji S. P. ChemistrySelect 2019, 4, 9354. |
| [9] | Haldar C.; Hoque M. E.; Bisht R.; Chattopadhyay B. Tetrahedron Lett. 2018, 59, 1269. |
| [10] | Yang Z.; Li X.-Y.; Yang K.; Yu N.; Gao R.; Ren Y. J. Org. Chem. 2023, 88, 2792. |
| [11] | Guo J.-J.; Guo M.-J. Chin. J. Org. Chem. 2021, 41, 2946. (in Chinese) |
| [11] | (郭京京, 郭敏捷, 有机化学, 2021, 41, 2946.) |
| [12] | Li J.; Han Y.; Chen C.-F. Chin. J. Org. Chem. 2020, 40, 3714. (in Chinese) |
| [12] | (李晶, 韩莹, 陈传峰, 有机化学, 2020, 40, 3714.) |
| [13] | He Q.; Zuniga V.; Kim S. H.; Kim S. K. Sessler J. L. Chem. Rev. 2019, 119, 9753. |
| [14] | Pinheiro S.; Soteras I.; Gelpi J. L.; Dehez F.; Chipot C.; Luque F. J.; Curutchet C. Phys. Chem. Chem. Phys. 2017, 19, 9849. |
| [15] | Yamada S. J. Chem. Rev. 2018, 118, 11353. |
| [16] | Quinonero D.; Garau C.; Rotger C.; Frontera A.; Ballester P.; Costa A.; Deya P. M. Angew. Chem., Int. Ed. 2002, 41, 3389. |
| [17] | Mascal M.; Armstrong A.; Bartberger M. D. J. Am. Chem. Soc. 2002, 124, 6274. |
| [18] | Hoog P. D.; Gamez P.; Mutikainen I.; Turpeinen U.; Reedijk J. Angew. Chem., Int. Ed. 2004, 43,5815. |
| [19] | Qin H.-M.; Jiang J.; Sun X.-X.; Lin N.; Yang P.-F.; Chen Y. Inorg. Chem. 2023, 62, 6458. |
| [20] | Tan M.-L.; Lopez M. A. G.; Sakai N.; Matile S.; Angew. Chem., Int. Ed. 2023, 62, e202310393. |
| [21] | Odubo F. E.; Zeller M.; Rosokha S. V. J. Phys. Chem. A 2023, 127, 5851. |
| [22] | Liu L.-X.; Li C.-B.; Gong J.-Y.; Zhang Y.; Ji W.-W.; Feng L.-N.; Jiang G.-Y.; Wang J.-G.; Tang B.-Z. Angew. Chem., Int. Ed. 2023, e202307776. |
| [23] | (a) Wu X.; Wang P.; Lewis W.; Jiang Y.-B.; Gale P. A. Nat. Commun. 2022, 13, 4623. |
| [23] | (b) Saha P.; Madhavan N. Org. Lett. 2020, 22, 5104. |
| [24] | Hohenberg P.; Kohn W. Phys. Rev. 1964, 136, B864. |
| [25] | Kohn W.; Sham L. J. Phys. Rev. 1965, 140, A1133. |
| [26] | Bader R. F. W.; Matta C. F. Found. Chem. 2013, 15, 253. |
| [27] | Thirman J.; Head-Gordon M. J. Phys. Chem. A 2017, 121, 717. |
| [28] | Liu Y.-Z.; Yuan K.; Yuan Z.; Zhu Y.-C.; Lv L.-L. RSC Adv. 2016, 6, 14666. |
| [29] | Reilly A. M.; Tkatchenko A. Chem. Sci. 2015, 6, 3289. |
| [30] | Wang D.-X.; Wang M.-X. Acc. Chem. Res. 2020, 53, 1364. |
| [31] | Frontera A.; Gamez P.; Mascal M.; Mooibroek T. J.; Reedijk J. Angew. Chem., Int. Ed. 2011, 50, 9564. |
| [32] | Berryman O. B.; Bryantsev V. S.; Stay D. P.; Johnson D. W.; Hay B. P. J. Am. Chem. Soc. 2007, 129, 48. |
| [33] | Hay B. P.; Bryantsev V. S. Chem. Commun. 2008, 7; 2417. |
| [34] | Masoodi H. R.; Pourhosseini R. S.; Bagheri S. Comput. Theor. Chem. 2023, 1220, 114022. |
| [35] | Quinonero D.; Frontera A.; Garau C.; Ballester P.; Costa A.; Deya P. M. ChemPhysChem 2006, 7, 2487. |
| [36] | Garau C.; Quinonero D.; Frontera A.; Ballester P.; Costa A.; Deya P. M. New J. Chem. 2003, 27, 211. |
| [37] | Li Z.-F.; Li H.-X.; Yang X.-P. Phys. Chem. Chem. Phys. 2014, 16, 25876. |
| [38] | Anstoter C.; Rogers J. P.; Verlet J. R. R. J. Am. Chem. Soc. 2019, 141, 6132. |
| [39] | Liu Z.-Y.; Chen Z.; Xu X. CCS Chem. 2020, 2, 904. |
| [40] | Liu Z.-X.; Chen Z.; Xi J.-Y.; Xu X. Natl. Sci. Rev. 2020, 7, 1036. |
| [41] | Liu Z.-Y.; Chen Z.; Xu X. Chin. J. Chem. Phys. 2020, 33, 285. |
| [42] | Fan X.-Z.; Liu X.; He Z.-L.; Zhu K.-Y.; Shi G.-S. J. Mol. Model 2022, 28, 225. |
| [43] | Tuo D.-H.; Ao Y.-F.; Wang Q.-Q.; Wang D.-X. CCS Chem. 2022, 4, 2806. |
| [44] | Salonen M. S. L. M.; Ellermann M.; Diederich F. Angew. Chem., Int. Ed. 2011, 50, 4808. |
| [45] | Quinonero D.; Frontera A.; Escudero D.; Ballester P.; Costa A.; Daya P. M. ChemPhysChem 2007, 8, 1182. |
| [46] | Chen T.-W.; Wang L.-Y.; Li S.-Y.; Dong L.-C.; Tan L.-X. Org. Lett. 2023, 25, 5774. |
| [47] | Giese M.; Albrecht M.; Rissanen K. Chem. Commun. 2016, 52, 1778. |
| [48] | Murata C.; Shin J.; Konishi K. Chem. Commun. 2023, 59, 2441. |
| [49] | Park C. H.; Simmons H. E. J. Am. Chem. Soc. 1968, 90, 2431. |
| [50] | Maeda H.; Haketa Y.; Murata T.; Ohta E.; Marata T.; Yasuda N. Org. Biomol. Chem. 2021, 19, 7369. |
| [51] | Wang D.-X.; Wang Q.-Q.; Han Y.-C.; Wang Y.-L.; Huang Z.-T.; Wang M.-X. Chem.-Eur. J. 2010, 16, 13053. |
| [52] | Liu W.; Wang Q.-Q.; Wang Y.-Y.; Huang Z.-T.; Wang D.-X. RSC Adv. 2014, 4, 9339. |
| [53] | Tuo D.-H.; Liu W.; Wang X.-Y.; Wang X.-D.; Ao F.-Y.; Wang Q.-Q.; Li Z.-Y.; Wang D.-X. J. Am. Chem. Soc. 2019, 141, 1118. |
| [54] | (a) Wang X.-Y.; Zhu J.; Wang Q.-Q.; Ao Y.-F.; Wang D.-X. Inorg. Chem. 2019, 58, 5980. |
| [54] | (b) Rather I. A.; Wagay S. A.; Ali R. Coord. Chem. Rev. 2020, 415, 213327. |
| [55] | Wang D.-X.; Wang M.-X. J. Am. Chem. Soc. 2013, 135, 892. |
| [56] | He Q.; Ao Y.-F.; Huang Z.-T.; Wang D.-X. Angew. Chem., Int. Ed. 2015, 54, 11785. |
| [57] | Li Z.-Y.; Li C.-L.; Li P.; Zuo Y.; Liu X.-N.; Xu S.-J.; Zou L.-Y. Zhuang Q.-X.; Gao S.; Liu X.-Y.; Zhang S.-D. ChemPlusChem 2020, 85, 906. |
| [58] | Li Y.-J.; Huang, T-T.; Liu, J.; Xie, Y.-Q.; Shi, B.-B.; Zhang, Y.-M.; Yao, H.; Wei, T-B.; Lin, Q. ACS Sustainable Chem. Eng. 2022, 10, 7907. |
| [59] | Ballester P.; Scarso A. Front. Chem. 2019, 7, 174. |
| [60] | Zhao Y.-J.; Cotelle Y.; Liu L.; Lopez-Andarias J.; Bornhof A.-B.; Akamatsu M.; Sakai N.; Matile S. Acc. Chem. Res. 2018, 51, 2255. |
| [61] | Neel A. J.; Hilton M. J.; Sigman M. S.; Toste F. D. Nature 2017, 543, 637. |
| [62] | Zhao Y.-J.; Domoto Y. Y.; Orentas E.; Beuchat C.; Emery D.; Mareda J.; Sakai N.; Matile S. Angew. Chem., Int. Ed. 2013, 52, 9940. |
| [63] | Zhao Y.-J.; Sakai N.; Matile S. Nat. Commun. 2014, 5, 3911. |
| [64] | Bornhof A.-B.; Bauza A.; Aster A.; Pupier M.; Frontera A.; Vauthey E.; Skai N.; Matile. S. J. Am. Chem. Soc. 2018, 140, 4884. |
| [65] | Cotelle Y.; Benz S.; Avestro A. J.; Ward T. R.; Sakai N.; Matile S. Angew. Chem., Int. Ed. 2016, 55, 4275. |
| [66] | Wang C.; Miros F. N.; Mareda J.; Sakai N.; Matile S. Angew. Chem., Int. Ed. 2016, 55, 14422. |
| [67] | Buglioni L.; Mastandrea M. M.; Frontera A.; Pericas M. A. Chem.-Eur. J. 2019, 25, 11785. |
| [68] | Lopez-Andarias J.; Frontera A.; Matile S. J. Am. Chem. Soc. 2017, 139, 13296. |
| [69] | Bornhof A.-B.; Vazquez-Nakagawa M.; Rodrigue-Perez L.; Herranz M. A.; Sakai N.; Martin N.; Matile S.; Lopez-Andarias J. Angew. Chem., Int. Ed. 2019, 58, 16097. |
| [70] | Liu L.; Cotelle Y.; Bornhof A.-B.; Besnard C.; Sakai N.; Matile S. Angew. Chem., Int. Ed. 2017, 56, 13066. |
| [71] | Luo N.; Ao Y.-F.; Wang D.-X.; Wang Q.-Q. Angew. Chem., Int. Ed. 2021, 60, 20650. |
| [72] | Molina P.; Zapata F.; Caballero A. Chem. Rev. 2017, 117, 9907. |
| [73] | Chang Y.-X.; Li B.; Guo M.; Cai Y.-H.; Xu K.-X. Chin. J. Org. Chem. 2019, 39, 2485. (in Chinese) |
| [73] | (常永新, 李白, 郭淼, 蔡永红, 徐括喜, 有机化学, 2019, 39, 2485.) |
| [74] | Kaur N.; Kaur G.; Fegade U. A.; Singh A.; Sahoo S. K.; Kuwar A. S.; Singh N. TrAC, Trends Anal. Chem. 2017, 95, 86. |
| [75] | Xiao L.-W.; Ren P.; Jing X.-M.; Ren L.-L.; Li Z.; Dai F.-C. Chin. J. Org. Chem. 2017, 37, 3085. (in Chinese) |
| [75] | (肖立伟, 任萍, 景学敏, 任丽磊, 李政, 戴富才, 有机化学, 2017, 37, 3085.) |
| [76] | Kim D.; Tarakeshwar P.; Kim K. S. J. Phys. Chem. A 2004, 108, 1250. |
| [77] | Kan X.-N.; Liu H.; Pan Q.-Y.; Li Z.-B.; Zhao Y.-J. Chin. Chem. Lett. 2018, 29, 261. |
| [78] | Mascal M. Angew. Chem., Int. Ed. 2006, 45, 2890. |
| [79] | Guo Q.-H.; Fu Z.-D.; Zhao L.; Wang M.-X. Angew. Chem., Int. Ed. 2014, 53, 13548. |
| [80] | Plais R.; Boufroura H.; Gouarin G.; Gaucher A.; Haldys V.; Brosseau A.; Clavier G.; Salpin J. Y.; Prim D. RSC Adv. 2021, 11, 9476. |
| [81] | Plais R.; Gouarin G.; Bournier A.; Zayene O.; Mussard V.; Bourdreux F.; Marrot J.; Brosseau A.; Gaucher A.; Clavier G.; Salpin J. Y.; Prim D. ChemPhysChem 2023, 24, e202200524. |
| [82] | Huang W.-L.; Wang X.-D.; Li S.; Zhang R.; Ao Y.-F.; Tang J.; Wang Q.-Q.; Wang D.-X. J. Org. Chem. 2019, 84, 8859. |
| [83] | Malenov D. P.; Zaric S. D. Chem.-Eur. J. 2021, 27, 17862. |
| [84] | Eytel L. M.; Gibert A. K.; Gorner P.; Zakharov L. N.; Johnson D. W.; Haley M. M. Chem.-Eur. J. 2017, 23, 4051. |
| [85] | Luo J.; Zhu J.; Tuo D.-H.; Yuan Q.-Q.; Wang L.; Wang X.-B.; Ao F.-Y.; Wang Q.-Q.; Wang D.-X. Chem.-Eur. J. 2019, 25, 13275. |
| [86] | Zeng H.; Liu P.-R.; Feng G.-Q.; Huang F.-H. J. Am. Chem. Soc. 2019, 141, 16501. |
| [87] | Yang H.-H.; Liu P.-P.; Hu J.-P.; Fang H.; Lin Q.; Hong Y.; Zhang Y.-M.; Qu W.-J.; Wei T.-B. Soft Matter 2020, 16, 9876. |
| [88] | Orenha R. P.; Silva V. B. D.; Caramori G. F.; Piotrowski M. J.; Nagurniak G. R.; Parreira R. L. Phys. Chem. Chem. Phys. 2021, 23, 11455. |
| [89] | Queizan M.; Sanchez-Lozano M.; Mandado M.; Hermida-Ramon J. M. H. J. Chem. Inf. Model. 2021, 61, 4455. |
| [90] | Li W.-C.; Qin P.; Zhao X.-X.; Qu W.-J.; Lin Q.; Yao H.; Wei T.-B.; Zhang Y.-M.; Liu Y.-Z.; Shi B.-B. Org. Biomol. Chem. 2022, 20, 9122. |
| [91] | Guo S.-Y.; Tong S.; Guo Q.-H.; Wang M.-X. Org. Chem. Front. 2023, 10, 1405. |
| [92] | Luo J.-D.; Xie Z.-L.; Lam J. W. Y.; Cheng L.; Chen H.-Y.; Qiu C.-F.; Kwok H. S.; Zhan X.-W.; Liu Y.-Q.; Zhu D.-B.; Tang B.-Z. Chem. Commun. 2001, 1740. |
| [93] | Jiang G.-Y.; Wang J.-G.; Tang B.-Z. ChemMedChem 2023, 18, e202200697. |
| [94] | Tian X.-Q.; Zuo M.-Z.; Niu P.-B.; Wang K.-Y.; Hu X.-Y. Chin. J. Org. Chem. 2020, 40, 1823. (in Chinese) |
| [94] | (田雪琪, 左旻瓒, 牛蓬勃, 王开亚, 胡晓玉, 有机化学, 2020, 40, 1823.) |
| [95] | Wang J.-G.; Gu X.-G.; Zhang P.-F.; Huang X.-B.; Zheng X.-Y.; Chen M.; Feng H.-T.; Kwok R. T. K.; Lam J. W. Y.; Tang B.-Z. J. Am. Chem. Soc. 2017, 139, 16974. |
| [96] | Nie H.; Hu K.; Cai Y.-J.; Peng Q.; Zhao Z.-J.; Hu R.-R.; Chen J.-W.; Su S.-J.; Qin A.-J.; Tang B.-Z. Mater. Chem. Front. 2017, 1, 1125. |
| [97] | Bolle P.; Cheret Y.; Roiland C.; Sanguinet L.; Faulques E.; Serier-Brault H.; Bouit P. A.; Hissler M.; Dessapt R. Chem.-Asian J. 2019, 14, 1642. |
| [98] | Jiang G.-Y.; Yu J.; Wang J.-G.; Tang B.-Z. Aggregate 2022, 3, e285. |
| [99] | Lin Q.; Gong G.-F.; Fan Y.-Q.; Chen Y.-Y.; Wang J.; Guan X.-W.; Liu J.; Zhang Y.-M.; Yao H.; Wei T.-B. Chem. Commun. 2019, 55, 3247. |
| [100] | Gong G.-F.; Chen Y.-Y.; Zhang Y.-M.; Fan Y.-Q.; Zhou Q.; Yang H.-L.; Zhang Q.-P.; Yao H.; Wei T.-B.; Lin Q. Soft Matter 2019, 15, 6348. |
| [101] | Gong G.-F.; Chen Y.-Y.; Zhang Y.-M.; Fan Y.-Q.; Zhao Q.; An J.-N.; Yao H.; Wei T.-B.; Lin Q. ACS Sustainable Chem. Eng. 2020, 8, 5831. |
| [102] | Kim S.; Kim J.; Lee D. Angew. Chem., Int. Ed. 2021, 60, 10858. |
| [103] | Li Q.-Y.; Gong J.-Y.; Li Y.; Zhang R.-Y.; Wang H.-R.; Zhang J.-Q.; Yan H.; Lam J. W. Y.; Sung H. H. Y.; Williams L. D.; Kwok R. T. K.; Li M.-H.; Wang J.-G.; Tang B.-Z. Chem. Sci. 2021, 12, 709. |
| [104] | Chen K.-Q.; Li G.-G.; Zhang H.; Wu H.-Z.; Li Y.; Li Y.-X.; Wang Z.-M.; Tang B.-Z. Chem. Eng. J. 2022, 433, 133646. |
| [105] | Jiang G.-Y.; Hu R.; Li C.-B.; Gong J.-Y.; Wang J.-G.; Lam J. W. Y.; Qin A.-J.; Tang B.-Z. Chem.-Eur. J. 2022, 28, e202202388. |
/
| 〈 |
|
〉 |