Chinese Journal of Organic Chemistry >
Research Progress of Continuous Flow Selective Hydrogenation Technology
Received date: 2023-10-07
Revised date: 2023-11-23
Online published: 2023-12-29
Supported by
National Natural Science Foundation of China(51976225); Fundamental Research Funds for the Central scientific Universities(2242022R10058)
Flow hydrogenation technology is an important means of synthesizing and preparing fine chemicals, accounting for a significant proportion of the preparation of pharmaceutical intermediates and the production of high-value chemicals. The heterogeneous catalytic hydrogenation method has excellent economic and environmental protection properties. By using loaded catalysts, pollutant emissions can be effectively reduced, and substrate conversion rate and selectivity can be improved. This article provides a detailed introduction to the types of microreactors classified by catalyst loading methods and commonly used solid catalysts and elaborates on the progress made by continuous flow technology in the field of catalytic hydrogenation of different functional groups. On this basis, flow chemistry, as one of the top ten emerging chemical technologies, has great prospects in catalytic hydrogenation applications. Continuous, automated, and intelligent technologies are the future of the pharmaceutical and chemical industries.
Key words: hydrogenation; heterogeneous catalysis; flow chemistry; microreactor
Siyi Mi , Longlong Ma , Jianguo Liu . Research Progress of Continuous Flow Selective Hydrogenation Technology[J]. Chinese Journal of Organic Chemistry, 2024 , 44(5) : 1445 -1457 . DOI: 10.6023/cjoc202310006
| [1] | Chen, Z. J.; Chen, J. Y.; Li, Y. W. Chin. J. Catal. 2017, 38, 1108. |
| [2] | Zhang, L.-L.; Zhou, M. X.; Wang, A. Q.; Zhang, T. Chem. Rev. 2020, 120, 683. |
| [3] | Yu, T.; Jiao, J.; Song, P. D.; Nie, W. Z.; Yi, C. H.; Zhang, Q.; Li, P. F. ChemSusChem 2020, 13, 2876. |
| [4] | Fanelli, F.; Parisi, G.; Degennaro, L.; Luisi, R. Beilstein J. Org. Chem. 2017, 13, 520. |
| [5] | Coyle, E.-E.; Oelgem?ller, M. Photochem. Photobiol. Sci. 2008, 7, 1313. |
| [6] | Munirathinam, R.; Huskens, J.; Verboom, W. Adv. Synth. Catal. 2015, 357, 1093. |
| [7] | Chinnusamy, T.; Yudha, S.-S.; Hager, M.; Kreitmeier, P.; Reiser, O. ChemSusChem 2012, 5, 247. |
| [8] | Colella, M.; Carlucci, C.; Luisi, R. Top. Curr. Chem. 2018, 376, 46. |
| [9] | Yoshida, J.; Kim, H.; Nagaki, A. ChemSusChem 2011, 4, 331. |
| [10] | Shang, M. J.; No?l, T.; Su, Y. H.; Hessel, V. Ind. Eng. Chem. Res. 2016, 55, 2669. |
| [11] | Zhao, D. B.; Ding, K. L. ACS Catal. 2013, 3, 928. |
| [12] | Karim, A.; Bravo, J.; Gorm, D.; Conant, T.; Datye, A. Catal. Today 2005, 110, 86. |
| [13] | Zhang, J. H.; Yin, J. B.; Duan, X. N.; Zhang, C. H.; Zhang, J. S. J. Catal. 2023, 420, 89. |
| [14] | Viklund, C.; Svec, F.; Fréchet, J. M. J.; Irgum, K. Chem. Mater. 1996, 8, 744. |
| [15] | Walsh, Z.; Paull, B.; Macka, M. Anal. Chim. Acta 2012, 750, 28. |
| [16] | Kirschning, A.; Solodenko, W.; Mennecke, K. Chem.-Eur. J. 2006, 12, 5972. |
| [17] | Sachse, A.; Galarneau, A.; Coq, B.; Fajula, F. New J. Chem. 2011, 35, 259. |
| [18] | Kieviet, B. D.; Sch?n, P. M.; Vancso, G. J. Lab Chip 2014, 14, 4159. |
| [19] | Avril, A.; Hornung, C. H.; Urban, A.; Fraser, D.; Horne, M.; Veder, J. P.; Tsanaktsidis, J.; Rodopoulos, T.; Henry, C.; Gunasegaram, D. R. React. Chem. Eng. 2017, 2, 180. |
| [20] | Hornung, C. H.; Nguyen, X.; Carafa, A.; Gardiner, J.; Urban, A.; Fraser, D.; Horne, M. D.; Gunasegaram, D. R.; Tsanaktsidis, J. Org. Process Res. Dev. 2017, 21, 1311. |
| [21] | Kundra, M.; Zhu, Y. T.; Nguyen, X.; Fraser, D.; Hornung, C. H.; Tsanaktsidis, J. React. Chem. Eng. 2022, 7, 284. |
| [22] | Lan, X. C.; Wang, T. F. ACS Catal. 2020, 10, 2764. |
| [23] | Arnold, H.; D?bert, F.; Gaube, J. In Selective Hydrogenation of Hydrocarbons, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008, p. 3266. |
| [24] | Polidoro, D.; Selva, M.; Luque, R. ChemSusChem 2023, 16, e202300318. |
| [25] | Zhuang, X. Z.; Liu, J. G.; Zhong, S. R.; Ma, L.-L. Sustainable Chem. Pharm. 2022, 29, 100769. |
| [26] | Audemar, M.; Wang, Y. T.; Zhao, D. Y.; Royer, S.; Jér?me, F.; Len, C.; De Oliveira Vigier, K. Energies 2020, 13, 1002. |
| [27] | Xu, J. M.; Cui, Q.-Q.; Xue, T.; Guan, Y. J.; Wu, P. ACS Omega 2020, 5, 30257. |
| [28] | Wang, W. Y.; Wang, Q.; Chu, Y.-Y.; Qi, G. D.; Li, S. H.; Xu, J.; Deng, F. J. Phys. Chem. C 2021, 125, 17144. |
| [29] | Viar, N.; Requies, J. M.; Agirre, I.; Iriondo, A.; García-Sancho, C.; Arias, P. L. Energy 2022, 255, 124437. |
| [30] | Kalong, M.; Srifa, A.; Ratchahat, S.; Koo-amornpattana, W.; Poo-arporn, Y.; Limphirat, W.; Khemthong, P.; Assabumrungrat, S.; Tomishige, K.; Kawi, S. Sustainable Energy Fuels 2023, 7, 934. |
| [31] | Anastas, P. T.; Kirchhoff, M.-M. Acc. Chem. Res. 2002, 35, 686. |
| [32] | Nie, R. F.; Tao, Y. W.; Nie, Y. Q.; Lu, T. L.; Wang, J. S.; Zhang, Y. S.; Lu, X. Y.; Xu, C.-C. ACS Catal. 2021, 11, 1071. |
| [33] | Ma, C.; Huang, M.-M.; Yin, J. B.; Lou, F. Y.; Zhang, J. S. Chem. Eng. Sci. 2022, 251, 117477. |
| [34] | Wang, N.; Liu, J. G.; Li, X. J.; Ma, L.-L. Catal. Commun. 2023, 175, 106620. |
| [35] | Yuan, Q.-Q.; Zhang, D. M.; Haandel, L. V.; Ye, F. Y.; Xue, T.; Hensen, E. J. M.; Guan, Y. J. J. Mol. Catal. A: Chem. 2015, 406, 58. |
| [36] | Maxted, E. B.; Moon, K. L.; Overgage, E. Discuss. Faraday Soc. 1950, 8, 135. |
| [37] | Popov, Y. V.; Mokhov, V. M.; Nebykov, D. N.; Latyshova, S. E.; Shcherbakova, K. V.; Panov, A. O. Kinet. Catal. 2018, 59, 444. |
| [38] | Carrales-Alvarado, D. H.; Dongil, A. B.; Guerrero-Ruiz, A.; Rodríguez-Ramos, I. Chem. Commun. 2021, 57, 6479. |
| [39] | Guicheret, B.; Vanoye, L.; Rivera-Carcamo, C.; de Bellefon, C.; Serp, P.; Philippe, R.; Favre-Reguillon, A. ChemSusChem 2022, 15, e202200916. |
| [40] | Phillips, J. M.; Ahamed, M.; Duan, X. F.; Lamb, R. N.; Qu, X. L.; Zheng, K.; Zou, J.; Chalker, J. M.; Raston, C. L. ACS Appl. Bio Mater. 2019, 2, 488. |
| [41] | Moore, J. C.; Howie, R. A.; Bourne, S. L.; Jenkins, G. N.; Licence, P.; Poliakoff, M.; George, M. W. ACS Sustainable Chem. Eng. 2019, 7, 16814. |
| [42] | Irfan, M.; Glasnov, T. N.; Kappe, C. O. ChemSusChem 2011, 4, 300. |
| [43] | Chaparro, S.; Martinez, J. J.; Rojas, H. A.; Pineda, A.; Luque, R. Catal. Today 2021, 368, 181. |
| [44] | Fernández-Ropero, A. J.; Zawadzki, B.; Kowalewski, E.; Pieta, I. S.; Krawczyk, M.; Matus, K.; Lisovytskiy, D.; ?r?bowata, A. Catalysts 2021, 11, 501. |
| [45] | Calcio Gaudino, E.; Manzoli, M.; Carnaroglio, D.; Wu, Z. L.; Grillo, G.; Rotolo, L.; Medlock, J.; Bonrath, W.; Cravotto, G. RSC Adv. 2018, 8, 7029. |
| [46] | Swamy, A.; Kanakikodi, K. S.; Bakuru, V. R.; Kulkarni, B.-B.; Maradur, S. P.; Kalidindi, S. B. ChemistrySelect 2023, 8, e202203926. |
| [47] | Bakuru, V. R.; Fazl-Ur-Rahman, K.; Periyasamy, G.; Velaga, B.; Peela, N. R.; Dmello, M. E.; Kanakikodi, K. S.; Maradur, S. P.; Maji, T. K.; Kalidindi, S. B. Catal. Sci. Technol. 2022, 12, 5265. |
| [48] | Ouyang, W. Y.; Yepez, A.; Romero, A.-A.; Luque, R. Catal. Today 2018, 308, 32. |
| [49] | Ratthiwal, J.; Lazaro, N.; Pineda, A.; Esposito, R.; Alothman, Z. A.; Reubroycharoen, P.; Luque, R. Catal. Commun. 2023, 177, 106649. |
| [50] | Ronda-Leal, M.; Osman, S. M.; Won Jang, H.; Shokouhimehr, M.; Romero, A.-A.; Luque, R. Fuel 2023, 333, 126221. |
| [51] | Chetty, T.; Dasireddy, V. D. B. C.; Friedrich, H. B. Catal. Lett. 2019, 149, 2787. |
| [52] | Cova, C. M.; Zuliani, A.; Mu?oz-Batista, M. J.; Luque, R. Green Chem. 2019, 21, 4712. |
| [53] | Osako, T.; Torii, K.; Hirata, S.; Uozumi, Y. ACS Catal. 2017, 7, 7371. |
| [54] | Rodriguez-Padron, D.; Perosa, A.; Longo, L.; Luque, R.; Selva, M. ChemSusChem 2022, 15, e202200503. |
| [55] | Mhadmhan, S.; Franco, A.; Pineda, A.; Reubroycharoen, P.; Luque, R. ACS Sustainable Chem. Eng. 2019, 7, 14210. |
| [56] | Molinari, R.; Lavorato, C.; Argurio, P. Chem. Eng. J. 2015, 274, 307. |
| [57] | Kreissl, H.; Jin, J.; Lin, S.-H.; Schüette, D.; St?rtte, S.; Levin, N.; Chaudret, B.; Vorholt, A. J.; Bordet, A.; Leitner, W. Angew. Chem.,Int. Ed. 2021, 60, 26639. |
| [58] | Lin, S.-S.; Liu, J. G.; Ma, L.-L. React. Chem. Eng. 2022, 7, 1126. |
| [59] | Heinen, A. W.; Peters, J. A.; Van Bekkum, H. Eur. J. Org. Chem. 2000, 2501. |
| [60] | Altu?, C.; Mu?oz-Batista, M. J.; Rodríguez-Padrón, D.; Balu, A. M.; Romero, A.-A.; Luque, R. Green Chem. 2019, 21, 300. |
| [61] | Polidoro, D.; Rodriguez-Padron, D.; Perosa, A.; Luque, R.; Selva, M. Materials (Basel) 2023, 16, 575. |
| [62] | Yang, H.-H.; Wang, L. G.; Xu, S.; Hui, X.; Cao, Y.; He, P.; Li, Y.; Li, H. Q. Chem. Eng. J. 2022, 431, 133863. |
| [63] | Sebek, M.; Atia, H.; Steinfeldt, N. J. Flow Chem. 2021, 11, 333. |
| [64] | Duan, X. N.; Yin, J. B.; Feng, A. X.; Huang, M.-M.; Fu, W. S.; Xu, W. F.; Huang, Z. F.; Zhang, J. S. J. Flow Chem. 2021, 12, 121. |
| [65] | Chai, K. J.; Shen, R. Q.; Qi, T.-T.; Chen, J. L.; Su, W. K.; Su, A. Processes 2023, 11, 1074. |
| [66] | Kowalewski, E.; Matus, K.; Gajek, A.; ?r?bowata, A. Catalysts 2022, 12, 1062. |
| [67] | Herzog, B. D.; Smiley, R. A. In Hexamethylenediamine, Wiley-VCH, Weinheim, 2012, p. 2. |
| [68] | Sharma, D. M.; Punji, B. Chem.-Asian J. 2020, 15, 690. |
| [69] | Bagal, D. B.; Bhanage, B. M. Adv. Synth. Catal. 2015, 357, 883. |
| [70] | Konrath, R.; Heutz, F. J. L.; Steinfeldt, N.; Rockstroh, N.; Kamer, P. C. J. Chem. Sci. 2019, 10, 8195. |
| [71] | Meszaros, R.; Peng, B. J.; Otvos, S. B.; Yang, S. C.; Fulop, F. ChemPlusChem 2019, 84, 1508. |
| [72] | Yamada, T.; Park, K.; Furugen, C.; Jiang, J.; Shimizu, E.; Ito, N.; Sajiki, H. ChemSusChem 2022, 15, e202102138. |
| [73] | Nagu, A.; Vasikerappa, K.; Gidyonu, P.; Prathap, C.; Venkata Rao, M.; Rama Rao, K. S.; David Raju, B. Res. Chem. Intermed. 2020, 46, 2669. |
| [74] | Dempsey, S. D.; Ryan, A.-A.; Smyth, M.; Moody, T. S.; Wharry, S.; Fahey, K.; Beale, A. M.; Mediavilla Madrigal, S.; Dingwall, P.; Rooney, D. W.; Knipe, P. C.; Muldoon, M. J.; Thompson, J. M. React. Chem. Eng. 2023, 8, 1559. |
| [75] | Wang, P. X.; Peng, Z. P.; Wang, X. P.; Lin, Y.; Hong, H. B.; Chen, F.; Chen, X. K.; Zhang, J. S. Chem. Eng. Sci. 2023, 269, 118460. |
| [76] | Sartori, G.; Ballini, R.; Bigi, F.; Bosica, G.; Maggi, R.; Righi, P. Chem. Rev. 2004, 104, 199. |
| [77] | Benson, H.; Bones, K.; Churchill, G.; Ford, G.; Frodsham, L.; Janbon, S.; Millington, F.; Powell, L.; Raw, S. A.; Reid, J.; Stark, A.; Steven, A. Org. Process Res. Dev. 2020, 24, 588. |
| [78] | Sultane, P. R.; Mete, T. B.; Bhat, R. G. Tetrahedron Lett. 2015, 56, 2067. |
| [79] | Yamada, T.; Teranishi, W.; Park, K.; Jiang, J.; Tachikawa, T.; Furusato, S.; Sajiki, H. ChemCatChem 2020, 12, 4052. |
| [80] | Desai, B.; Dallinger, D.; Kappe, C. O. Tetrahedron 2006, 62, 4651. |
| [81] | Tu, J. C.; Sang, L.; Cheng, H.; Ai, N.; Zhang, J. S. Org. Process Res. Dev. 2019, 24, 59. |
| [82] | Menti-Platten, M.; Aldrich-Wright, J. R.; Gordon, C. P. Org. Biomol. Chem. 2021, 20, 106. |
| [83] | Yamada, T.; Yamamoto, H.; Kawai, K.; Park, K.; Aono, N.; Sajiki, H. Catalysts 2022, 12, 1253. |
| [84] | Mattellone, A.; Corbisiero, D.; Ferrazzano, L.; Cantelmi, P.; Martelli, G.; Palladino, C.; Tolomelli, A.; Cabri, W. Green Chem. 2023, 25, 2563. |
/
| 〈 |
|
〉 |