Chinese Journal of Organic Chemistry >
Electrochemical Oxidation Decarboxylative Cyclization of α-Keto Acid with o-Aminobenzylamine
Received date: 2023-10-18
Revised date: 2023-12-19
Online published: 2024-01-05
Supported by
Natural Science Foundation of Anhui Province(2008085QB66); Anhui Science and Technology Talent Introduction Project(HCYJ201903); Fundamental Research Funds for the Central Universities(PA2020GDKC0021); Innovation and Entrepreneurship Training Program for College Students in Anhui Province(S202310879099); Hefei Liheng Chemical Co., Ltd.(881133)
A novel method for synthesizing quinazolines by an electrochemical oxidation decarboxylative cyclization reaction of α-keto acid with o-aminobenzylamine under metal and external chemical oxidants free conditions was developed. This method has mild reaction conditions, and can tolerate a wide range of functional groups, and can provide the corresponding products with moderate to excellent yields. Furthermore, the method can also be used for the synthesis of other heterocycles such as benzoxazole, benzothiazole and benzimidazole.
Key words: electrochemistry; oxidative decarboxylation; cyclization; quinazoline
Jiwei Wu , Jun He , Jingjing Wang , Lixia Li , Caiyu Xu , Jie Zhou , Zirong Li , Huajian Xu . Electrochemical Oxidation Decarboxylative Cyclization of α-Keto Acid with o-Aminobenzylamine[J]. Chinese Journal of Organic Chemistry, 2024 , 44(3) : 972 -980 . DOI: 10.6023/cjoc202310015
| [1] | Gupta T.; Rohilla A.; Pathak A.; Akhtar J.; Haider M. R.; Yar M. S. Synth. Commun. 2018, 48, 1099. |
| [2] | Horn K. S. V.; Burda W. N.; Fleeman R.; Shaw L. N.; Manetsch R. J. Med. Chem. 2014, 57, 3075. |
| [3] | Smits R. A.; Adami M.; Istyastono E. P.; Zuiderveld O. P.; Van Dam C. M. E.; De Kanter F. J. J.; Jongejan A.; Coruzzi G.; Leurs R.; De Esch I. J. P. J. Med. Chem. 2010, 53, 2390. |
| [4] | Madapa S.; Tusi Z.; Mishra A.; Srivastava K.; Pandey S. K.; Tripathi R.; Puri S. K.; Batra S. Bioorg. Med. Chem. 2009, 17, 222. |
| [5] | Ugale V. G.; Bari S. B. Eur. J. Med. Chem. 2014, 80, 447. |
| [6] | Zhang Y.; Hou Q.; Li X.; Zhu J.; Wang W.; Li B.; Zhao L.; Xia H. Eur. J. Med. Chem. 2019, 178, 417. |
| [7] | Raskind M. A.; Peskind E. R.; Chow B.; Harris C.; Davis-Karim A.; Holmes H. A.; Hart K. L.; McFall M.; Mellman T. A.; Reist C.; Romesser J.; Rosenheck R.; Shih M. C.; Stein M. B.; Swift R.; Gleason T.; Lu Y.; Huang G. D. N. Engl. J. Med. 2018, 378, 507. |
| [8] | Moy B.; Kirkpatrick P.; Kar S.; Goss P. Nat. Rev. Drug Discovery 2007, 6, 431. |
| [9] | Sordella R.; Bell D. W.; Haber D. A.; Settleman J. Science 2004, 305, 1163. |
| [10] | (a) Sikari R.; Chakraborty G.; Guin A. K.; Paul N. D. J. Org. Chem. 2021, 86, 279. |
| [10] | (b) Xu H.-B.; Zhu Y.-Y.; Yang J.-H.; Chai X.-Y.; Dong L. Org. Chem. Front. 2020, 7, 1230. |
| [10] | (c) Yan Y.; Zhang Y.; Feng C.; Zha Z.; Wang Z. Angew. Chem., Int. Ed. 2012, 51, 8077. |
| [10] | (d) Zhang L.; Hu Z.; Dong J.; Zhang X. M.; Xu X. Adv. Synth. Catal. 2018, 360, 1938. |
| [10] | (e) Zhou Z.; Hu K.; Wang J.; Li Z.; Zhang Y.; Zha Z.; Wang Z. ACS Omega 2020, 5, 31963. |
| [11] | (a) Li C.; An S.; Zhu Y.; Zhang J.; Kang Y.; Liu P.; Wang Y.; Li J. RSC Adv. 2014, 4, 49888. |
| [11] | (b) Sikari R.; Chakraborty G.; Guin A. K.; Paul N. D. J. Org. Chem. 2021, 86, 279. |
| [11] | (c) Chakrabarti K.; Maji M.; Kundu S. Green Chem. 2019, 21, 1999. |
| [11] | (d) Huo S.; Kong S.; Zeng G.; Feng Q.; Lu G. L. J. Mol. Catal. 2021, 514, 111773. |
| [11] | (e) Kumar G. R. Y.; Begum N. S. New J. Chem. 2021, 45, 9811. |
| [11] | (f) Das S.; Mondal R.; Chakraborty G.; Guin A. K.; Das A.; Paul N. D. ACS Catal. 2021, 11, 7498. |
| [11] | (g) Yamaguchi T.; Sakairi K.; Yamaguchi E.; Tada N.; Itoh A. RSC Adv. 2016, 6, 56892. |
| [12] | (a) Tan Y.; Jiang W.; Ni P.; Fu Y.; Ding Q. Adv. Synth. Catal. 2022, 364, 3600. |
| [12] | (b) Shariati M.; Imanzadeh G.; Rostami A.; Ghoreishy N.; Kheirjou S. CR Chim. 2019, 22, 337. |
| [12] | (c) Yao S.; Zhou K.; Wang J.; Cao H.; Yu L.; Wu J.; Qiu P.; Xu Q. Green Chem. 2017, 19, 2945. |
| [12] | (d) Saha M.; Mukherjee P.; Das A. R. Tetrahedron Lett. 2017, 58, 2044. |
| [12] | (e) Liu Q.; Chen H.; Li S.; Guo Y.; Cao S.; Zhao Y. ChemistrySelect 2022, 7, e202201231. |
| [12] | (f) Han B.; Wang C.; Han R.-F.; Yu W.; Duan X.-Y.; Fang R.; Yang X.-L. Chem. Commun. 2011, 47, 7818. |
| [13] | (a) Gujjarappa R.; Vodnala N.; Reddy V. G.; Malakar C. C. Eur. J. Org. Chem. 2020, 2020, 803. |
| [13] | (b) Gujjarappa R.; Maity S. K.; Hazra C. K.; Vodnala N.; Dhiman S.; Kumar A.; Beifuss U.; Malakar C. C. Eur. J. Org. Chem. 2018, 2018, 4628. |
| [13] | (c) Ma J.; Wan Y.; Hong C.; Li M.; Hu X.; Mo W.; Hu B.; Sun N.; Jin L.; Shen Z. Eur. J. Org. Chem. 2017, 2017, 3335. |
| [14] | Laha J. K.; Panday S.; Tomar M.; Patel K. V. Org. Biomol. Chem. 2021, 19, 845. |
| [15] | Yang J.; Xie Z.; Jin L.; Chen X.; Le Z. Org. Biomol. Chem. 2022, 20, 3558. |
| [16] | (a) Yuan Y.; Yang J.; Lei A. Chem. Soc. Rev. 2021, 50, 10058. |
| [16] | (b) Xiong P.; Xu H.-C. Acc. Chem. Res. 2019, 52, 3339. |
| [16] | (c) Jiao K.-J.; Xing Y.-K.; Yang Q. L.; Qiu H.; Mei T.-S. Acc. Chem. Res. 2020, 53, 300. |
| [16] | (d) Shi S.-H.; Liang Y.; Jiao N. Chem. Rev. 2021, 121, 485. |
| [16] | (e) Minteer S. D.; Baran P. S. Acc. Chem. Res. 2020, 53, 545. |
| [16] | (f) Qian P.; Zha Z.; Wang Z. ChemElectroChem 2020, 7, 2527. |
| [16] | (g) Yount J.; Piercey D. G. Chem. Rev. 2022, 122, 8809. |
| [16] | (h) Cheng X.; Lei A.; Mei T.-S.; Xu H.-C.; Xu K.; Zeng C. CCS Chem. 2022, 4, 1120. |
| [16] | (i) Pan Y.; Meng X.; Wang Y.; He M. Chin. J. Org. Chem. 2023, 43, 1416. (in Chinese) |
| [16] | ( 潘永周, 蒙秀金, 王迎春, 何慕雪, 有机化学, 2023, 43, 1416.) |
| [16] | (j) Zhang H.; Liang S.; Wei D.; Xu K.; Zeng C. Eur. J. Org. Chem. 2022, 2022, e202200794. |
| [16] | (k) Wu Y.; Yi H.; Lei A. ACS Catal. 2018, 8, 1192. |
| [16] | (l) Xiao Q.; Tong Q.-X.; Zhong J.-J. Chin. J. Org. Chem. 2022, 42, 3979. (in Chinese) |
| [16] | 肖潜, 佟庆笑, 钟建基, 有机化学, 2022, 42, 3979.). |
| [16] | (m) Tan Z.; Zhang H.; Xu K.; Zeng C. Sci. China: Chem. 2024, 67, 450. |
| [16] | (n) Wei W.; Zhan L.; Gao L.; Huang G.; Ma X. Chin. J. Org. Chem. 2023, 43, 17. (in Chinese) |
| [16] | ( 魏琬絜, 詹磊, 高雷, 黄国保, 马献力, 有机化学, 2023, 43, 17.) |
| [17] | (a) Lin D.-Z.; Huang J.-M. Org. Lett. 2018, 20, 2112. |
| [17] | (b) Lin D.-Z.; Huang J.-M. Org. Lett. 2019, 21, 5862. |
| [17] | (c) Wang H.-B.; Huang J.-M. Adv. Synth. Catal. 2016, 358, 1975. |
| [18] | (a) Wang Q.-Q.; Xu K.; Jiang Y.-Y.; Liu Y.-G.; Sun B.-G.; Zeng C.-C. Org. Lett. 2017, 19, 5517. |
| [18] | (b) Ding H.; Xu K.; Zeng C. C. J. Catal. 2020, 381, 38. |
| [18] | (c) Li Y.; Liang S.; Wang D.; Xu K.; Zeng C. Synthesis 2023, 55, 3026. |
| [19] | Kong X.; Liu Y.; Lin L.; Chen Q.; Xu B. Green Chem. 2019, 21, 3796. |
| [20] | Lu F.; Gong F.; Li L.; Zhang K.; Li Z.; Zhang X.; Yin Y.; Wang Y.; Gao Z.; Zhang H.; Lei A. Eur. J. Org. Chem. 2020, 2020, 3257. |
| [21] | Zhao F.; Meng N.; Sun T.; Wen J.; Zhao X.; Wei W. Org. Chem. Front. 2021, 8, 6508. |
| [22] | (a) Zhao Y.; Meng X.; Cai C.; Wang L.; Gong H. Asian J. Org. Chem. 2022, 11, e202100748. |
| [22] | (b) Kong X.; Chen Y.; Chen X.; Lu Z.-X.; Wang W.; Ni S.-F.; Cao Z.-Y. Org. Lett. 2022, 24, 2137. |
| [22] | (c) Wang X.; Wu S.; Zhong Y.; Wang Y.; Pan Y.; Tang H. Chin. Chem. Lett. 2023, 34, 107537. |
| [23] | (a) Wu J.; Shi H.; Liu J.; Wang R.; Zhou J.; Xu X.-L.; Xu H.-J. Org. Chem. Front. 2023, 10, 2459. |
| [23] | (b) Dai J.-J.; Teng X.-X.; Fang W.; Xu J.; Xu H.-J. Chin. Chem. Lett. 2022, 33, 1555. |
| [23] | (c) Zhu X.-X.; Wang H.-Q.; Li C.-G.; Xu X.-L.; Xu J.; Dai J.-J.; Xu H.-J. J. Org. Chem. 2021, 86, 16114. |
| [24] | Mangiavacchi1 F.; Mollari1, L.; Bagnoli1, L.; Marini1, F.; Santi1, C. Chem. Heterocycl. Compd. 2018, 54, 478. |
/
| 〈 |
|
〉 |