Chinese Journal of Organic Chemistry >
Recent Advances on C—H Functionalization via Oxidative Electrophotocatalysis
Received date: 2023-11-30
Revised date: 2024-01-30
Online published: 2024-02-07
Supported by
National Natural Science Foundation of China(22371180); National Natural Science Foundation of China(22001163)
Direct and selective functionalization of relatively inert C—H bonds is a long-standing challenge in synthetic chemistry. While many strategies have been developed to date, new approach that does not require the use of transition-metals and oxidants is in high demand. Recently, electrophotocatalysis has emerged as a powerful means to effect direct C—H functionalization and other types of challenging transformations under mild reaction conditions. The recent advances on electrophotocatalytic C—H functionalization via anode oxidation are highlighted with a focus on mechanistic aspects. Challenges and opportunities of this emerging field are also discussed.
Key words: electrophotocatalysis; electrochemistry; C—H functionalization; oxidation
Aman Hasil , Rui Chang , Juntao Ye . Recent Advances on C—H Functionalization via Oxidative Electrophotocatalysis[J]. Chinese Journal of Organic Chemistry, 2024 , 44(3) : 728 -747 . DOI: 10.6023/cjoc202311032
| [1] | (a) Davies H. M. L.; Bois J. D.; Yu J.-Q. Chem. Soc. Rev. 2011, 40, 1976. |
| [1] | (b) Davies H. M. L.; Morton D. J. Org. Chem 2016, 81, 343. |
| [1] | (c) Achar T. K.; Maiti S.; Jana S.; Maiti D. ACS Catal. 2020, 10, 13748. |
| [1] | (d) Zhao Q.; Meng G.; Nolan S. P.; Szostak M. Chem. Rev. 2020, 120, 1981. |
| [1] | (e) Li P.; Terrett J. A.; Zbieg J. R. ACS Med. Chem. Lett. 2020, 11, 2120. |
| [1] | (f) Oliva M.; Coppola G. A.; Van der Eycken E. V.; Sharma U. K. Adv. Synth. Catal. 2021, 363, 1810. |
| [1] | (g) Guillemard L.; Kaplaneris N.; Ackermann L.; Johansson M. J. Nat. Rev. Chem. 2021, 5, 522. |
| [2] | (a) Giri R.; Shi B.-F.; Engle K. M.; Maugel N.; Yu J.-Q. Chem. Soc. Rev. 2009, 38, 3242. |
| [2] | (b) Gensch T.; Hopkinson M. N.; Glorius F.; Wencel-Delord J. Chem. Soc. Rev. 2016, 45, 2900. |
| [2] | (c) Liu B.; Romine A. M.; Rubel C. Z.; Engle K. M.; Shi B.-F. Chem. Rev. 2021, 121, 14957. |
| [2] | (d) Sinha S. K.; Guin S.; Maiti S.; Biswas J. P.; Porey S.; Maiti D.; Chem. Rev. 2021, 122, 5682. |
| [2] | (e) Lam N. Y. S.; Wu K.; Yu J. Q. Angew. Chem., Int. Ed. 2021, 60, 15767. |
| [2] | (f) Dutta U.; Maiti S.; Bhattacharya T.; Maiti D. Science 2021, 372, 701. |
| [2] | (g) Zhang J.; Rueping M. Chem. Soc. Rev. 2023, 52, 4099. |
| [2] | (h) Wang Y.; He Y.; Zhu S. Acc. Chem. Res. 2023, 56, 3475. |
| [2] | (i) Docherty J. H.; Lister T. M.; McArthur G.; Findlay M. T.; Domingo-Legarda P.; Kenyon J.; Choudhary S.; Larrosa I. Chem. Rev. 2023, 123, 7692. |
| [2] | (j) Li L.-J.; He Y.; Yang Y.; Guo J.; Lu Z.; Wang C.; Zhu S.; Zhu S.-F. CCS Chem. 2023, DOI: 10.31635/ccschem.023.202303412. |
| [3] | (a) Vega-Pe?aloza A.; Mateos J.; Companyó X.; Escudero-Casao M.; Dell'Amico L. Angew. Chem., Int. Ed. 2020, 60, 1082. |
| [3] | (b) Guillemard L.; Wencel-Delord J. Beilstein J. Org. Chem. 2020, 16, 1754. |
| [3] | (c) Kang Q.-Q.; Wu W.; Li Q.; Wei W.-T. Green Chem. 2020, 22, 3060. |
| [3] | (d) Zhou R.; Ma L.; Yang X.; Cao J. Org. Chem. Front. 2021, 8, 426. |
| [3] | (e) Chang L.; An Q.; Duan L.; Feng K.; Zuo Z. Chem. Rev. 2021, 122, 2429. |
| [3] | (f) Guo W.; Wang Q.; Zhu J. Chem. Soc. Rev. 2021, 50, 7359. |
| [3] | (g) Liao L.-L.; Song L.; Yan S.-S.; Ye J.-H.; Yu D.-G. Trends Chem. 2022, 4, 512. |
| [3] | (h) Wang P.-Z.; Xiao W.-J.; Chen J.-R. Nat. Rev. Chem. 2022, 7, 35. |
| [3] | (i) Li Z.; Li C.; Ding Y.; Huo H. Coord. Chem. Rev. 2022, 460, 214479. |
| [4] | (a) Yang Q. L.; Fang P.; Mei T. S. Chin. J. Chem. 2018, 36, 338. |
| [4] | (b) Weidner J.; Barwe S.; Sliozberg K.; Piontek S.; Masa J.; Apfel U.-P.; Schuhmann W. Beilstein J. Org. Chem. 2018, 14, 1436. |
| [4] | (c) Siu J. C.; Fu N.; Lin S. Acc. Chem. Res. 2020, 53, 547. |
| [4] | (d) Heard D. M.; Lennox A. J. J. Angew. Chem. Int. Ed. 2020, 59, 18866. |
| [4] | (e) Galeotti M.; Salamone M.; Bietti M. Chem. Soc. Rev. 2022, 51, 2171. |
| [4] | (f) Wang Y.; Dana S.; Long H.; Xu Y.; Li Y.; Kaplaneris N.; Ackermann L. Chem. Rev. 2023, 123, 11269. |
| [4] | (g) Tan Z.; Zhang H.; Xu K.; Zeng C. Sci. China: Chem. 2024, 67, 450. |
| [5] | (a) Plesniak M. P.; Huang H.-M.; Procter D. J. Nat. Rev. Chem. 2017, 372, 701. |
| [5] | (b) Capaldo L.; Ravelli D. Eur. J. Org. Chem. 2017, 2017, 2056. |
| [5] | (c) Liu Y.; Yi H.; Lei A. Chin. J. Chem. 2018, 36, 692. |
| [5] | (d) Holmberg-Douglas N.; Nicewicz D. A. Chem. Rev. 2021, 122, 1925. |
| [5] | (e) Murray P. R. D.; Cox J. H.; Chiappini N. D.; Roos C. B.; McLoughlin E. A.; Hejna B. G.; Nguyen S. T.; Ripberger H. H.; Ganley J. M.; Tsui E.; Shin N. Y.; Koronkiewicz B.; Qiu G.; Knowles R. R. Chem. Rev. 2021, 122, 2017. |
| [5] | (f) Golden D. L.; Suh S.-E.; Stahl S. S. Nat. Rev. Chem. 2022, 6, 405. |
| [5] | (g) Wu X.; Zhu C. Trends Chem. 2022, 4, 580. |
| [5] | (h) Cheng S.; Li Q.; Cheng X.; Lin Y. M.; Gong L. Chin. J. Chem. 2022, 40, 2825. |
| [5] | (i) Liu Y.; Li P.; Wang Y.; Qiu Y. Angew. Chem., Int. Ed. 2023, 62, e2023066. |
| [5] | (j) van der Zee, L. J. C.; Pahar, S.; Richards, E.; Melen, R. L.; Slootweg, J. C. Chem. Rev. 2023, 123, 9653. |
| [5] | (k) Bellotti P.; Huang H.-M.; Faber T.; Glorius F. Chem. Rev. 2023, 123, 4237. |
| [6] | Teets T. S.; Wu Y.; Kim D. Synlett 2021, 33, 1154. |
| [7] | Xu H.-C.; Xu F.; Lai X.-L. Synlett 2020, 32, 369. |
| [8] | (a) Ma R.; Lin G.; Zhou Y.; Liu Q.; Zhang T.; Shan G.; Yang M.; Wang J. npj Comput. Mater. 2019, 5, 78. |
| [8] | (b) Capaldo L.; Quadri L. L.; Ravelli D. Angew. Chem., Int. Ed. 2019, 58, 17508. |
| [8] | (c) Lv X.; Xu H.; Yin Y.; Zhao X.; Jiang Z. Chin. J. Chem. 2020, 38, 1480. |
| [8] | (d) Yu Y.; Guo P.; Zhong J.-S.; Yuan Y.; Ye K.-Y. Org. Chem. Front. 2020, 7, 131. |
| [8] | (e) Buglioni L.; Raymenants F.; Slattery A.; Zondag S. D. A.; No?l T. Chem. Rev. 2021, 122, 2752. |
| [8] | (f) Lu L.; Li H.; Lei A. Chin. J. Chem. 2021, 40, 256. |
| [8] | (g) Hardwick T.; Ahmed N. ACS Sustainable Chem. Eng. 2021, 9, 4324. |
| [8] | (h) De Sarkar S.; Maiti D.; Halder A.; Mahanty K. Synthesis 2022, 55, 400. |
| [8] | (i) Cheng X.; Lei A.; Mei T.-S.; Xu H.-C.; Xu K.; Zeng C. CCS Chem. 2022, 4, 1120. |
| [8] | (j) Huang H.; Steiniger K. A.; Lambert T. H. J. Am. Chem. Soc. 2022, 144, 12567. |
| [8] | (k) Lu J.; Yao Y.; Li L.; Fu N. J. Am. Chem. Soc. 2023, 145, 26774. |
| [8] | (l) Tian X.; Liu Y.; Yakubov S.; Schütte J.; Chiba S.; Barham J. P. Chem. Soc. Rev. 2024, 53, 263. |
| [8] | (m) Ye Z.; Liu H.; Zhang F. Chin. J. Org. Chem. 2024, 44, DOI: 10.6023/cjoc202310034. (in Chinese) |
| [8] | ( 叶增辉, 刘华清, 张逢质, 有机化学, 2024, 44, DOI: 10.6023/ cjoc202310034.) |
| [9] | Moutet J.-C.; Reverdy G. Tetrahedron Lett. 1979, 20, 2389. |
| [10] | (a) Zhang X.; Guo S.-X.; Gandionco K. A.; Bond A. M.; Zhang J. Mater. Today Adv. 2020, 7, 100074. |
| [10] | (b) Kim H.; Kim H.; Lambert T. H.; Lin S. J. Am. Chem. Soc. 2020, 142, 2087. |
| [10] | (c) Lee M.-Y.; Kahl C.; Kaeffer N.; Leitner W. JACS Au 2022, 2, 573. |
| [10] | (d) Shao W.; Lu B.; Cao J.; Zhang J.; Cao H.; Zhang F.; Zhang C. Chem.-Asian J. 2022, 18, e202201093. |
| [10] | (e) Li J.; Chen F.; Renata H. J. Am. Chem. Soc. 2022, 144, 19238. |
| [10] | (f) Edgecomb J. M.; Alektiar S. N.; Cowper N. G. W.; Sowin J. A.; Wickens Z. K. J. Am. Chem. Soc. 2023, 145, 20169. |
| [11] | Xue X.-S.; Ji P.; Zhou B.; Cheng J.-P. Chem. Rev. 2017, 117, 8622. |
| [12] | (a) Minisci F.; Bernardi R.; Bertinin F.; Galli R.; Perchinijmmo M. Tetrahedron 1971, 27, 3575. |
| [12] | (b) Wang M.; Zhang C.; Zhao H.; Jiang H.; Dixneuf P. H.; Zhang M. CCS Chem. 2024, 6, 342. |
| [12] | (c) Wang M.; Zhang C.; Ci C.; Jiang H.; Dixneuf P. H.; Zhang M. J. Am. Chem. Soc. 2023, 145, 10967. |
| [13] | Proctor R. S. J.; Phipps R. J. Angew. Chem., Int. Ed. 2019, 58, 13666. |
| [14] | Yan H.; Hou Z. W.; Xu H. C. Angew. Chem., Int. Ed. 2019, 58, 4592. |
| [15] | Lai X. L.; Shu X. M.; Song J.; Xu H. C. Angew. Chem., Int. Ed. 2020, 59, 10626. |
| [16] | Chen D.; Jiang J.; Wan J. P. Chin. J. Chem. 2022, 40, 2582. |
| [17] | Struwe J.; Ackermann L. Faraday Discuss. 2023, 247, 79. |
| [18] | Qi J.; Xu J.; Ang H. T.; Wang B.; Gupta N. K.; Dubbaka S. R.; O’Neill P.; Mao X.; Lum Y.; Wu J. J. Am. Chem. Soc. 2023, 145, 24965. |
| [19] | Ren L.-Q.; Li N.; Ke J.; He C. Org. Chem. Front. 2022, 9, 6400. |
| [20] | Wan Q.; Hou Z.-W.; Zhao X.-R.; Xie X.; Wang L. Org. Lett. 2023, 25, 1008. |
| [21] | Zhao X. R.; Zhang Y. C.; Hou Z. W.; Wang L. Chin. J. Chem. 2023, 41, 2963. |
| [22] | Luo C.; Lu W.-H.; Wang G.-Q.; Zhang Z.-B.; Li H.-Q.; Han P.; Yang D.; Jing L.-H.; Wang C. J. Org. Chem 2022, 87, 3567. |
| [23] | Lai X.-L.; Xu H.-C. J. Am. Chem. Soc. 2023, 145, 18753. |
| [24] | (a) Sambiagio C.; Marsden S. P.; Blacker A. J.; McGowan P. C. Chem. Soc. Rev. 2014, 43, 3525. |
| [24] | (b) Cui T.; Ye C. X.; Thelemann J.; Jenisch D.; Meggers E. Chin. J. Chem. 2023, 41, 2065. |
| [24] | (c) Huang G. H.; Li J. M.; Huang J. J.; Lin J. D.; Chuang G. J. Chem.-Eur. J. 2014, 20, 5240. |
| [25] | Seifinoferest B.; Tanbakouchian A.; Larijani B.; Mahdavi M. Asian J. Org. Chem. 2021, 10, 1319. |
| [26] | Zhong Q.; Wang P.-L.; Gao H.; Ma F.; Yang Y.; Li H. Green Chem. 2023, 25, 3982. |
| [27] | (a) Huang H.; Strater Z. M.; Rauch M.; Shee J.; Sisto T. J.; Nuckolls C.; Lambert T. H. Angew. Chem., nt. Ed. 2019, 58, 13318. |
| [27] | (b) Hou Z. W W.; Xu H. C. ChemElectroChem 2021, 8, 1571. |
| [28] | ?urauskas J.; Bohá?ová S.; Wu S.; Butera V.; Schmid S.; Domański M.; Slanina T.; Barham J. P. Angew. Chem., Int. Ed. 2023, 62, e202307550 |
| [29] | Huang H.; Lambert T. H. Angew. Chem., Int. Ed. 2021, 60, 11163. |
| [30] | Tang S.; Guillot R.; Grimaud L.; Vitale M. R.; Vincent G. Org. Lett. 2022, 24, 2125. |
| [31] | Shen T.; Lambert T. H. Science 2021, 371, 620. |
| [32] | Shen T.; Lambert T. H. J. Am. Chem. Soc. 2021, 143, 8597. |
| [33] | Shen T.; Li Y.-L.; Ye K.-Y.; Lambert T. H. Nature 2022, 614, 275. |
| [34] | Cai C.-Y.; Lai X.-L.; Wang Y.; Hu H.-H.; Song J.; Yang Y.; Wang C.; Xu H.-C. Nat. Catal. 2022, 5, 943. |
| [35] | Lai X.-L.; Chen M.; Wang Y.; Song J.; Xu H.-C. J. Am. Chem. Soc. 2022, 144, 20201. |
| [36] | Yuan Y.; Yang J.; Zhang J. Chem. Sci. 2023, 14, 705. |
| [37] | Wang D.; Zhu N.; Chen P.; Lin Z.; Liu G. J. Am. Chem. Soc. 2017, 139, 15632. |
| [38] | Capaldo L.; Ravelli D.; Fagnoni M. Chem. Rev. 2021, 122, 1875. |
| [39] | Zhang Y.; Sun X.; Su J.-H.; Li T.; Du C.; Li K.; Sun Q.; Zha Z.; Wang Z. Org. Lett. 2023, 25, 5067. |
| [40] | Wang Y.; Li L.; Fu N. ACS Catal. 2022, 12, 10661. |
| [41] | Niu L.; Jiang C.; Liang Y.; Liu D.; Bu F.; Shi R.; Chen H.; Chowdhury A. D.; Lei A. J. Am. Chem. Soc. 2020, 142, 17693. |
| [42] | Wang F.; Stahl S. S. Angew. Chem., Int. Ed. 2019, 58, 6385. |
| [43] | Ioannou D. I.; Capaldo L.; Sanramat J.; Reek J. N. H.; No?l T. Angew. Chem., Int. Ed. 2023, 62, e202315881. |
| [44] | Zhang L.; Liardet L.; Luo J.; Ren D.; Gr?tzel M.; Hu X. Nat. Catal. 2019, 2, 366. |
| [45] | Duyi S.; Linghui L.; Ge J.; Yujia L.; Xinhui Z.; Peiwei G.; Fanjun Z.; Mianran C. Chin. J. Org. Chem. 2024, 44, DOI: 10.6023/cjoc202308024. (in Chinese) |
| [45] | ( 沈都益, 李玲慧, 靳鸽, 梁雨佳, 张欣慧, 公培伟, 张范军, 晁绵冉, 有机化学, 2024, 44, DOI: 10.6023/cjoc202308024.) |
| [46] | Zhang W.; Carpenter K. L.; Lin S. Angew. Chem., Int. Ed. 2019, 59, 409. |
| [47] | Huang H.; Strater Z. M.; Lambert T. H. J. Am. Chem. Soc. 2020, 142, 1698. |
| [48] | Wilson R. M.; Lambert T. H. Acc. Chem. Res. 2022, 55, 3057. |
| [49] | Qin Y.; Zhu L.; Luo S. Chem. Rev. 2017, 117, 9433. |
| [50] | (a) Iqbal S. A.; Pahl J.; Yuan K.; Ingleson M. J. Chem. Soc. Rev. 2020, 49, 4564. |
| [50] | (b) Yang C.-H. Org. Chem. Front. 2023, 10, 6010. |
| [50] | (c) Zou C.; Wu H.; Ji Y.; Zhang P.; Cui H.; Huang G.; Zhang C. Chin. J. Chem. 2022, 40, 2437. |
| [51] | Moniruzzaman M.; Afrin S.; Ali M. K. Asian J. Org. Chem. 2023, 12, e202300090. |
| [52] | Zhong P.-F.; Tu J.-L.; Zhao Y.; Zhong N.; Yang C.; Guo L.; Xia W. Nat. Commun. 2023, 14, 6530. |
| [53] | Tan Z.; Jiang Y.; Xu K.; Zeng C. J. Catal. 2023, 417, 473. |
| [54] | (a) Li C.-J. Acc. Chem. Res. 2008, 42, 335. |
| [54] | (b) Li C. J. Chin. J. Chem. 2022, 40, 838. |
| [55] | Xu P.; Chen P. Y.; Xu H. C. Angew. Chem., Int. Ed. 2020, 59, 14275. |
| [56] | Capaldo L.; Quadri L. L.; Merli D.; Ravelli D. Chem. Commun. 2021, 57, 4424. |
| [57] | Xiong P.; Ivlev S. I.; Meggers E. Nat. Catal. 2023, 6, 1186. |
/
| 〈 |
|
〉 |