REVIEWS

Recent Advances on C—H Functionalization via Oxidative Electrophotocatalysis

  • Aman Hasil ,
  • Rui Chang ,
  • Juntao Ye
Expand
  • Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240

Received date: 2023-11-30

  Revised date: 2024-01-30

  Online published: 2024-02-07

Supported by

National Natural Science Foundation of China(22371180); National Natural Science Foundation of China(22001163)

Abstract

Direct and selective functionalization of relatively inert C—H bonds is a long-standing challenge in synthetic chemistry. While many strategies have been developed to date, new approach that does not require the use of transition-metals and oxidants is in high demand. Recently, electrophotocatalysis has emerged as a powerful means to effect direct C—H functionalization and other types of challenging transformations under mild reaction conditions. The recent advances on electrophotocatalytic C—H functionalization via anode oxidation are highlighted with a focus on mechanistic aspects. Challenges and opportunities of this emerging field are also discussed.

Cite this article

Aman Hasil , Rui Chang , Juntao Ye . Recent Advances on C—H Functionalization via Oxidative Electrophotocatalysis[J]. Chinese Journal of Organic Chemistry, 2024 , 44(3) : 728 -747 . DOI: 10.6023/cjoc202311032

References

[1]
(a) Davies H. M. L.; Bois J. D.; Yu J.-Q. Chem. Soc. Rev. 2011, 40, 1976.
[1]
(b) Davies H. M. L.; Morton D. J. Org. Chem 2016, 81, 343.
[1]
(c) Achar T. K.; Maiti S.; Jana S.; Maiti D. ACS Catal. 2020, 10, 13748.
[1]
(d) Zhao Q.; Meng G.; Nolan S. P.; Szostak M. Chem. Rev. 2020, 120, 1981.
[1]
(e) Li P.; Terrett J. A.; Zbieg J. R. ACS Med. Chem. Lett. 2020, 11, 2120.
[1]
(f) Oliva M.; Coppola G. A.; Van der Eycken E. V.; Sharma U. K. Adv. Synth. Catal. 2021, 363, 1810.
[1]
(g) Guillemard L.; Kaplaneris N.; Ackermann L.; Johansson M. J. Nat. Rev. Chem. 2021, 5, 522.
[2]
(a) Giri R.; Shi B.-F.; Engle K. M.; Maugel N.; Yu J.-Q. Chem. Soc. Rev. 2009, 38, 3242.
[2]
(b) Gensch T.; Hopkinson M. N.; Glorius F.; Wencel-Delord J. Chem. Soc. Rev. 2016, 45, 2900.
[2]
(c) Liu B.; Romine A. M.; Rubel C. Z.; Engle K. M.; Shi B.-F. Chem. Rev. 2021, 121, 14957.
[2]
(d) Sinha S. K.; Guin S.; Maiti S.; Biswas J. P.; Porey S.; Maiti D.; Chem. Rev. 2021, 122, 5682.
[2]
(e) Lam N. Y. S.; Wu K.; Yu J. Q. Angew. Chem., Int. Ed. 2021, 60, 15767.
[2]
(f) Dutta U.; Maiti S.; Bhattacharya T.; Maiti D. Science 2021, 372, 701.
[2]
(g) Zhang J.; Rueping M. Chem. Soc. Rev. 2023, 52, 4099.
[2]
(h) Wang Y.; He Y.; Zhu S. Acc. Chem. Res. 2023, 56, 3475.
[2]
(i) Docherty J. H.; Lister T. M.; McArthur G.; Findlay M. T.; Domingo-Legarda P.; Kenyon J.; Choudhary S.; Larrosa I. Chem. Rev. 2023, 123, 7692.
[2]
(j) Li L.-J.; He Y.; Yang Y.; Guo J.; Lu Z.; Wang C.; Zhu S.; Zhu S.-F. CCS Chem. 2023, DOI: 10.31635/ccschem.023.202303412.
[3]
(a) Vega-Pe?aloza A.; Mateos J.; Companyó X.; Escudero-Casao M.; Dell'Amico L. Angew. Chem., Int. Ed. 2020, 60, 1082.
[3]
(b) Guillemard L.; Wencel-Delord J. Beilstein J. Org. Chem. 2020, 16, 1754.
[3]
(c) Kang Q.-Q.; Wu W.; Li Q.; Wei W.-T. Green Chem. 2020, 22, 3060.
[3]
(d) Zhou R.; Ma L.; Yang X.; Cao J. Org. Chem. Front. 2021, 8, 426.
[3]
(e) Chang L.; An Q.; Duan L.; Feng K.; Zuo Z. Chem. Rev. 2021, 122, 2429.
[3]
(f) Guo W.; Wang Q.; Zhu J. Chem. Soc. Rev. 2021, 50, 7359.
[3]
(g) Liao L.-L.; Song L.; Yan S.-S.; Ye J.-H.; Yu D.-G. Trends Chem. 2022, 4, 512.
[3]
(h) Wang P.-Z.; Xiao W.-J.; Chen J.-R. Nat. Rev. Chem. 2022, 7, 35.
[3]
(i) Li Z.; Li C.; Ding Y.; Huo H. Coord. Chem. Rev. 2022, 460, 214479.
[4]
(a) Yang Q. L.; Fang P.; Mei T. S. Chin. J. Chem. 2018, 36, 338.
[4]
(b) Weidner J.; Barwe S.; Sliozberg K.; Piontek S.; Masa J.; Apfel U.-P.; Schuhmann W. Beilstein J. Org. Chem. 2018, 14, 1436.
[4]
(c) Siu J. C.; Fu N.; Lin S. Acc. Chem. Res. 2020, 53, 547.
[4]
(d) Heard D. M.; Lennox A. J. J. Angew. Chem. Int. Ed. 2020, 59, 18866.
[4]
(e) Galeotti M.; Salamone M.; Bietti M. Chem. Soc. Rev. 2022, 51, 2171.
[4]
(f) Wang Y.; Dana S.; Long H.; Xu Y.; Li Y.; Kaplaneris N.; Ackermann L. Chem. Rev. 2023, 123, 11269.
[4]
(g) Tan Z.; Zhang H.; Xu K.; Zeng C. Sci. China: Chem. 2024, 67, 450.
[5]
(a) Plesniak M. P.; Huang H.-M.; Procter D. J. Nat. Rev. Chem. 2017, 372, 701.
[5]
(b) Capaldo L.; Ravelli D. Eur. J. Org. Chem. 2017, 2017, 2056.
[5]
(c) Liu Y.; Yi H.; Lei A. Chin. J. Chem. 2018, 36, 692.
[5]
(d) Holmberg-Douglas N.; Nicewicz D. A. Chem. Rev. 2021, 122, 1925.
[5]
(e) Murray P. R. D.; Cox J. H.; Chiappini N. D.; Roos C. B.; McLoughlin E. A.; Hejna B. G.; Nguyen S. T.; Ripberger H. H.; Ganley J. M.; Tsui E.; Shin N. Y.; Koronkiewicz B.; Qiu G.; Knowles R. R. Chem. Rev. 2021, 122, 2017.
[5]
(f) Golden D. L.; Suh S.-E.; Stahl S. S. Nat. Rev. Chem. 2022, 6, 405.
[5]
(g) Wu X.; Zhu C. Trends Chem. 2022, 4, 580.
[5]
(h) Cheng S.; Li Q.; Cheng X.; Lin Y. M.; Gong L. Chin. J. Chem. 2022, 40, 2825.
[5]
(i) Liu Y.; Li P.; Wang Y.; Qiu Y. Angew. Chem., Int. Ed. 2023, 62, e2023066.
[5]
(j) van der Zee, L. J. C.; Pahar, S.; Richards, E.; Melen, R. L.; Slootweg, J. C. Chem. Rev. 2023, 123, 9653.
[5]
(k) Bellotti P.; Huang H.-M.; Faber T.; Glorius F. Chem. Rev. 2023, 123, 4237.
[6]
Teets T. S.; Wu Y.; Kim D. Synlett 2021, 33, 1154.
[7]
Xu H.-C.; Xu F.; Lai X.-L. Synlett 2020, 32, 369.
[8]
(a) Ma R.; Lin G.; Zhou Y.; Liu Q.; Zhang T.; Shan G.; Yang M.; Wang J. npj Comput. Mater. 2019, 5, 78.
[8]
(b) Capaldo L.; Quadri L. L.; Ravelli D. Angew. Chem., Int. Ed. 2019, 58, 17508.
[8]
(c) Lv X.; Xu H.; Yin Y.; Zhao X.; Jiang Z. Chin. J. Chem. 2020, 38, 1480.
[8]
(d) Yu Y.; Guo P.; Zhong J.-S.; Yuan Y.; Ye K.-Y. Org. Chem. Front. 2020, 7, 131.
[8]
(e) Buglioni L.; Raymenants F.; Slattery A.; Zondag S. D. A.; No?l T. Chem. Rev. 2021, 122, 2752.
[8]
(f) Lu L.; Li H.; Lei A. Chin. J. Chem. 2021, 40, 256.
[8]
(g) Hardwick T.; Ahmed N. ACS Sustainable Chem. Eng. 2021, 9, 4324.
[8]
(h) De Sarkar S.; Maiti D.; Halder A.; Mahanty K. Synthesis 2022, 55, 400.
[8]
(i) Cheng X.; Lei A.; Mei T.-S.; Xu H.-C.; Xu K.; Zeng C. CCS Chem. 2022, 4, 1120.
[8]
(j) Huang H.; Steiniger K. A.; Lambert T. H. J. Am. Chem. Soc. 2022, 144, 12567.
[8]
(k) Lu J.; Yao Y.; Li L.; Fu N. J. Am. Chem. Soc. 2023, 145, 26774.
[8]
(l) Tian X.; Liu Y.; Yakubov S.; Schütte J.; Chiba S.; Barham J. P. Chem. Soc. Rev. 2024, 53, 263.
[8]
(m) Ye Z.; Liu H.; Zhang F. Chin. J. Org. Chem. 2024, 44, DOI: 10.6023/cjoc202310034. (in Chinese)
[8]
( 叶增辉, 刘华清, 张逢质, 有机化学, 2024, 44, DOI: 10.6023/ cjoc202310034.)
[9]
Moutet J.-C.; Reverdy G. Tetrahedron Lett. 1979, 20, 2389.
[10]
(a) Zhang X.; Guo S.-X.; Gandionco K. A.; Bond A. M.; Zhang J. Mater. Today Adv. 2020, 7, 100074.
[10]
(b) Kim H.; Kim H.; Lambert T. H.; Lin S. J. Am. Chem. Soc. 2020, 142, 2087.
[10]
(c) Lee M.-Y.; Kahl C.; Kaeffer N.; Leitner W. JACS Au 2022, 2, 573.
[10]
(d) Shao W.; Lu B.; Cao J.; Zhang J.; Cao H.; Zhang F.; Zhang C. Chem.-Asian J. 2022, 18, e202201093.
[10]
(e) Li J.; Chen F.; Renata H. J. Am. Chem. Soc. 2022, 144, 19238.
[10]
(f) Edgecomb J. M.; Alektiar S. N.; Cowper N. G. W.; Sowin J. A.; Wickens Z. K. J. Am. Chem. Soc. 2023, 145, 20169.
[11]
Xue X.-S.; Ji P.; Zhou B.; Cheng J.-P. Chem. Rev. 2017, 117, 8622.
[12]
(a) Minisci F.; Bernardi R.; Bertinin F.; Galli R.; Perchinijmmo M. Tetrahedron 1971, 27, 3575.
[12]
(b) Wang M.; Zhang C.; Zhao H.; Jiang H.; Dixneuf P. H.; Zhang M. CCS Chem. 2024, 6, 342.
[12]
(c) Wang M.; Zhang C.; Ci C.; Jiang H.; Dixneuf P. H.; Zhang M. J. Am. Chem. Soc. 2023, 145, 10967.
[13]
Proctor R. S. J.; Phipps R. J. Angew. Chem., Int. Ed. 2019, 58, 13666.
[14]
Yan H.; Hou Z. W.; Xu H. C. Angew. Chem., Int. Ed. 2019, 58, 4592.
[15]
Lai X. L.; Shu X. M.; Song J.; Xu H. C. Angew. Chem., Int. Ed. 2020, 59, 10626.
[16]
Chen D.; Jiang J.; Wan J. P. Chin. J. Chem. 2022, 40, 2582.
[17]
Struwe J.; Ackermann L. Faraday Discuss. 2023, 247, 79.
[18]
Qi J.; Xu J.; Ang H. T.; Wang B.; Gupta N. K.; Dubbaka S. R.; O’Neill P.; Mao X.; Lum Y.; Wu J. J. Am. Chem. Soc. 2023, 145, 24965.
[19]
Ren L.-Q.; Li N.; Ke J.; He C. Org. Chem. Front. 2022, 9, 6400.
[20]
Wan Q.; Hou Z.-W.; Zhao X.-R.; Xie X.; Wang L. Org. Lett. 2023, 25, 1008.
[21]
Zhao X. R.; Zhang Y. C.; Hou Z. W.; Wang L. Chin. J. Chem. 2023, 41, 2963.
[22]
Luo C.; Lu W.-H.; Wang G.-Q.; Zhang Z.-B.; Li H.-Q.; Han P.; Yang D.; Jing L.-H.; Wang C. J. Org. Chem 2022, 87, 3567.
[23]
Lai X.-L.; Xu H.-C. J. Am. Chem. Soc. 2023, 145, 18753.
[24]
(a) Sambiagio C.; Marsden S. P.; Blacker A. J.; McGowan P. C. Chem. Soc. Rev. 2014, 43, 3525.
[24]
(b) Cui T.; Ye C. X.; Thelemann J.; Jenisch D.; Meggers E. Chin. J. Chem. 2023, 41, 2065.
[24]
(c) Huang G. H.; Li J. M.; Huang J. J.; Lin J. D.; Chuang G. J. Chem.-Eur. J. 2014, 20, 5240.
[25]
Seifinoferest B.; Tanbakouchian A.; Larijani B.; Mahdavi M. Asian J. Org. Chem. 2021, 10, 1319.
[26]
Zhong Q.; Wang P.-L.; Gao H.; Ma F.; Yang Y.; Li H. Green Chem. 2023, 25, 3982.
[27]
(a) Huang H.; Strater Z. M.; Rauch M.; Shee J.; Sisto T. J.; Nuckolls C.; Lambert T. H. Angew. Chem., nt. Ed. 2019, 58, 13318.
[27]
(b) Hou Z. W W.; Xu H. C. ChemElectroChem 2021, 8, 1571.
[28]
?urauskas J.; Bohá?ová S.; Wu S.; Butera V.; Schmid S.; Domański M.; Slanina T.; Barham J. P. Angew. Chem., Int. Ed. 2023, 62, e202307550
[29]
Huang H.; Lambert T. H. Angew. Chem., Int. Ed. 2021, 60, 11163.
[30]
Tang S.; Guillot R.; Grimaud L.; Vitale M. R.; Vincent G. Org. Lett. 2022, 24, 2125.
[31]
Shen T.; Lambert T. H. Science 2021, 371, 620.
[32]
Shen T.; Lambert T. H. J. Am. Chem. Soc. 2021, 143, 8597.
[33]
Shen T.; Li Y.-L.; Ye K.-Y.; Lambert T. H. Nature 2022, 614, 275.
[34]
Cai C.-Y.; Lai X.-L.; Wang Y.; Hu H.-H.; Song J.; Yang Y.; Wang C.; Xu H.-C. Nat. Catal. 2022, 5, 943.
[35]
Lai X.-L.; Chen M.; Wang Y.; Song J.; Xu H.-C. J. Am. Chem. Soc. 2022, 144, 20201.
[36]
Yuan Y.; Yang J.; Zhang J. Chem. Sci. 2023, 14, 705.
[37]
Wang D.; Zhu N.; Chen P.; Lin Z.; Liu G. J. Am. Chem. Soc. 2017, 139, 15632.
[38]
Capaldo L.; Ravelli D.; Fagnoni M. Chem. Rev. 2021, 122, 1875.
[39]
Zhang Y.; Sun X.; Su J.-H.; Li T.; Du C.; Li K.; Sun Q.; Zha Z.; Wang Z. Org. Lett. 2023, 25, 5067.
[40]
Wang Y.; Li L.; Fu N. ACS Catal. 2022, 12, 10661.
[41]
Niu L.; Jiang C.; Liang Y.; Liu D.; Bu F.; Shi R.; Chen H.; Chowdhury A. D.; Lei A. J. Am. Chem. Soc. 2020, 142, 17693.
[42]
Wang F.; Stahl S. S. Angew. Chem., Int. Ed. 2019, 58, 6385.
[43]
Ioannou D. I.; Capaldo L.; Sanramat J.; Reek J. N. H.; No?l T. Angew. Chem., Int. Ed. 2023, 62, e202315881.
[44]
Zhang L.; Liardet L.; Luo J.; Ren D.; Gr?tzel M.; Hu X. Nat. Catal. 2019, 2, 366.
[45]
Duyi S.; Linghui L.; Ge J.; Yujia L.; Xinhui Z.; Peiwei G.; Fanjun Z.; Mianran C. Chin. J. Org. Chem. 2024, 44, DOI: 10.6023/cjoc202308024. (in Chinese)
[45]
( 沈都益, 李玲慧, 靳鸽, 梁雨佳, 张欣慧, 公培伟, 张范军, 晁绵冉, 有机化学, 2024, 44, DOI: 10.6023/cjoc202308024.)
[46]
Zhang W.; Carpenter K. L.; Lin S. Angew. Chem., Int. Ed. 2019, 59, 409.
[47]
Huang H.; Strater Z. M.; Lambert T. H. J. Am. Chem. Soc. 2020, 142, 1698.
[48]
Wilson R. M.; Lambert T. H. Acc. Chem. Res. 2022, 55, 3057.
[49]
Qin Y.; Zhu L.; Luo S. Chem. Rev. 2017, 117, 9433.
[50]
(a) Iqbal S. A.; Pahl J.; Yuan K.; Ingleson M. J. Chem. Soc. Rev. 2020, 49, 4564.
[50]
(b) Yang C.-H. Org. Chem. Front. 2023, 10, 6010.
[50]
(c) Zou C.; Wu H.; Ji Y.; Zhang P.; Cui H.; Huang G.; Zhang C. Chin. J. Chem. 2022, 40, 2437.
[51]
Moniruzzaman M.; Afrin S.; Ali M. K. Asian J. Org. Chem. 2023, 12, e202300090.
[52]
Zhong P.-F.; Tu J.-L.; Zhao Y.; Zhong N.; Yang C.; Guo L.; Xia W. Nat. Commun. 2023, 14, 6530.
[53]
Tan Z.; Jiang Y.; Xu K.; Zeng C. J. Catal. 2023, 417, 473.
[54]
(a) Li C.-J. Acc. Chem. Res. 2008, 42, 335.
[54]
(b) Li C. J. Chin. J. Chem. 2022, 40, 838.
[55]
Xu P.; Chen P. Y.; Xu H. C. Angew. Chem., Int. Ed. 2020, 59, 14275.
[56]
Capaldo L.; Quadri L. L.; Merli D.; Ravelli D. Chem. Commun. 2021, 57, 4424.
[57]
Xiong P.; Ivlev S. I.; Meggers E. Nat. Catal. 2023, 6, 1186.
Outlines

/