Chinese Journal of Organic Chemistry >
Deboronative Selenylation, Bromination, or Hydroxylation of Organic Boronic Acids Facilitated by Tetrabutylammonium Tribromide under Transition Metal-Free Conditions
Received date: 2023-12-24
Revised date: 2024-01-17
Online published: 2024-02-20
Supported by
National Natural Science Foundation of China(22061036); National Natural Science Foundation of China(21963010)
Divergent approaches for the convenient ipso-functionalization of organic boronic acids are presented, capitalizing on tetrabutylammonium tribromide (TBATB) under different, yet transition metal-free conditions. Through these methods, a wide array of organoborons can be efficiently converted into their corresponding selenylated, brominated, or hydroxylated products in moderate to excellent yields. The versatility of this strategy lies in its transition metal-free conditions, simple operation, and step-economic pathways, offering a promising idea for the ipso-functionalization of organoborons
Yongsheng Tian , Lanfeng Wei , Jiawei Huang , Yu Wei , Liang Xu , Shuai Liu . Deboronative Selenylation, Bromination, or Hydroxylation of Organic Boronic Acids Facilitated by Tetrabutylammonium Tribromide under Transition Metal-Free Conditions[J]. Chinese Journal of Organic Chemistry, 2024 , 44(6) : 1987 -1997 . DOI: 10.6023/cjoc202312023
| [1] | (a) Zhu, C.; Falck, J. R. Adv. Synth. Catal. 2014, 356, 2395. |
| [1] | (b) Roscales, S.; Csákÿ, A. G. Chem. Soc. Rev. 2014, 43, 8215. |
| [1] | (c) Hooshmand, S. E.; Heidari, B.; Sedghi, R.; Varma, R. S. Green Chem. 2019, 21, 381. |
| [1] | (d) Hall, D. G. Chem. Soc. Rev. 2019, 48, 3475. |
| [2] | (a) Zhang, G.; Lv, G.; Li, L.; Chen, F.; Cheng, J. Tetrahedron Lett. 2011, 52, 1993. |
| [2] | (b) Barcellos, A. M.; Sacramento, M.; da Costa, G. P.; Perin, G.; João Lenardão, E.; Alves, D. Coord. Chem. Rev. 2021, 442, 214012. |
| [2] | (c) An, C.; Li, C.; Huang, X.; Gao, W.; Zhou, Y.; Liu, M.; Wu, H. Org. Lett. 2019, 21, 6710. |
| [2] | (d) Yang, Y.; Li, C.; Leng, T.; Huang, X.; Gao, W.; Zhou, Y.; Liu, M.; Wu, H. Adv. Synth. Catal. 2020, 362, 2168. |
| [2] | (e) Zhang, X.; Huang, X. B.; Gao, W. X.; Zhou, Y. B.; Liu, M. C.; Wu, H. Y. Adv. Synth. Catal. 2020, 362, 5639. |
| [2] | (f) Lai, J.; Yin, F.; Guo, Q.; Yuan, F.; Nian, B.; Zhang, M.; Wu, Z.; Zhang, H.; Tang, E. Org. Biomol. Chem. 2022, 20, 5104. |
| [2] | (g) Andrews, M. J.; Carpentier, A.; Slawin, A. M. Z.; Cordes, D. B.; Macgregor, S. A.; Watson, A. J. B. ACS Catal. 2023, 13, 11117. |
| [2] | (h) Sun, N.; Zheng, K.; Zhang, M.; Zheng, G.; Jin, L.; Hu, B.; Shen, Z.; Hu, X. Green Chem. 2023, 25, 2782. |
| [2] | (i) Wang, X.; Meng, J.; Zhao, D.; Tang, S.; Sun, K. Chin. Chem. Lett. 2023, 34, 107736. |
| [3] | (a) Li, Y.; Wang, M.; Jiang, X. Chin. J. Chem. 2020, 38, 1521. |
| [3] | (b) Freitas, C. S.; Barcellos, A. M.; Ricordi, V. G.; Pena, J. M.; Perin, G.; Jacob, R. G.; Lenardão, E. J.; Alves, D. Green Chem. 2011, 13, 2931. |
| [3] | (c) Lee, C.; Ahn, S.; Cheon, C. J. Org. Chem. 2013, 78, 12154. |
| [3] | (d) Ahn, S.; Lee, C.; Kim, N.; Cheon, C. J. Org. Chem. 2014, 79, 7277. |
| [3] | (e) Ren, Y.; Xu, B.; Zhong, Z.; Pittman, C. U.; Zhou, A. Org. Chem. Front. 2019, 6, 2023. |
| [3] | (f) Sun, N.; Zheng, K.; Sun, P.; Chen, Y.; Jin, L.; Hu, B.; Shen, Z.; Hu, X. Adv. Synth. Catal. 2021, 363, 3577. |
| [4] | (a) Xie, S.; Li, D.; Huang, H.; Zhang, F.; Chen, Y. J. Am. Chem. Soc. 2019, 141, 16237. |
| [4] | (b) Ranjan, P.; Pillitteri, S.; Coppola, G.; Oliva, M.; Van der Eycken, E. V.; Sharma, U. K. ACS Catal. 2021, 11, 10862. |
| [4] | (c) Iwata, Y.; Tanaka, Y.; Kubosaki, S.; Morita, T.; Yoshimi, Y. Chem. Commun. 2018, 54, 1257. |
| [4] | (d) Saba, S.; Rafique, J.; Braga, A. L. Adv. Synth. Catal. 2015, 357, 1446. |
| [5] | Yin, C.; Tang, S.; Mei, J.; Hu, X.; Zhang, H. Org. Chem. Front. 2023, 10, 3361. |
| [6] | Belal, M.; Sarkar, S.; Subramanian, R.; Khan, A. T. Org. Biomol. Chem. 2022, 20, 2562. |
| [7] | (a) Quibell, J. M.; Perry, G. J. P.; Cannas, D. M.; Larrosa, I. Chem. Sci. 2018, 9, 3860. |
| [7] | (b) Gao, S.; Bethel, T. K.; Kakeshpour, T.; Hubbell, G. E.; Jackson, J. E.; Tepe, J. J. J. Org. Chem. 2018, 83, 9250. |
| [8] | Naik, S.; Gopinath, R.; Goswami, M.; Patel, B. K. Org. Biomol. Chem. 2004, 2, 1670. |
| [9] | Saikia, I.; Borah, A. J.; Phukan, P. Chem. Rev. 2016, 116, 6837. |
| [10] | Ainley, A. D.; Challenger, F. J. Chem. Soc. (Resumed) 1930, 2171. |
| [11] | (a) Yao, M.; Kabalka, G. W.; Blevins, D. W.; Reddy, M. S.; Yong, L. Tetrahedron 2012, 68, 3738. |
| [11] | (b) Yao, M.; Reddy, M. S.; Yong, L.; Walfish, I.; Blevins, D. W.; Kabalka, G. W. Org. Lett. 2010, 12, 700. |
| [12] | (a) Wang, Z.; Wei, L.; Liu, J.; Wei, Y.; Xu, L. Org. Chem. Front. 2023, 10, 104. |
| [12] | (b) Pengcheng, D.; Liang, X. Chin. J. Org. Chem. 2021, 41, 4690. (in Chinese) |
| [12] | (代鹏程, 徐亮, 有机化学, 2021, 41, 4690.) |
| [13] | (a) Huang, J.; Li, X.; Xu, L.; Wei, Y. J. Org. Chem. 2023, 88, 3054. |
| [13] | (b) Li, X.; Huang, J.; Xu, L.; Liu, P.; Wei, Y. J. Org. Chem. 2022, 87, 10684. |
| [14] | (a) Molloy, J. J.; O’Rourke, K. M.; Frias, C. P.; Sloan, N. L.; West, M. J.; Pimlott, S. L.; Sutherland, A.; Watson, A. J. Org. Lett. 2019, 21, 2488. |
| [14] | (b) He, D.; Yao, J.; Ma, B.; Wei, J.; Hao, G.; Tuo, X.; Guo, S.; Fu, Z.; Cai, H. Green Chem. 2020, 22, 1559. |
| [14] | (c) An, R.; Liao, L.; Liu, X.; Song, S.; Zhao, X. Org. Chem. Front. 2018, 5, 3557. |
| [15] | (a) Fu, Z.; Yi, X.; Fang, Z.; Zhong, T.; He, D.; Guo, S.; Cai, H. Chem. Asian J. 2022, 17, e202200780. |
| [15] | (b) Wei, L.; Zhang, J.; Xu, L. ACS Sustain. Chem. Eng. 2020, 8, 13894. |
| [15] | (c) Zou, Y.; Chen, J.; Liu, X.; Lu, L.; Davis, R. L.; Jørgensen, K. A.; Xiao, W. Angew. Chem., Int. Ed. 2012, 51, 784. |
| [15] | (d) Pitre, S. P.; McTiernan, C. D.; Ismaili, H.; Scaiano, J. C. J. Am. Chem. Soc. 2013, 135, 13286. |
| [16] | Leng, T.; Wu, G.; Zhou, Y.-B.; Gao, W.; Ding, J.; Huang, X.; Liu, M.; Wu, H. Adv. Synth. Catal. 2018, 360, 4336. |
| [17] | Wang, R.; Wang, X.; Mao, S.; Zhao, Y.; Yuan, B.; Yang, X. Y.; Li, J.; Chen, Z. Adv. Synth. Catal. 2022, 364, 1607. |
| [18] | Bai, J. H.; Qi, X. J.; Sun, W.; Yu, T. Y.; Xu, P. F. Adv. Synth. Catal. 2021, 363, 2084. |
| [19] | Perin, G.; Soares, L. K.; Hellwig, P. S.; Silva, M. S.; Neto, J. S.; Roehrs, J. A.; Barcellos, T.; Lenardao, E. J. New J. Chem. 2019, 43, 6323. |
| [20] | Fu, Z.; Yin, J.; He, D.; Yi, X.; Guo, S.; Cai, H. Green Chem. 2022, 24, 130. |
| [21] | Ren, K.; Wang, M.; Wang, L. Org. Biomol. Chem. 2009, 7, 4858. |
| [22] | Wu, S.; Shi, J.; Zhang, C. Org. Biomol. Chem. 2019, 17, 7468. |
| [23] | Zhumagazy, S.; Zhu, C.; Yue, H.; Rueping, M. Synlett 2023, 34, 1381. |
| [24] | Kundu, D.; Ahammed, S.; Ranu, B. C. Org. Lett. 2014, 16, 1814. |
| [25] | Ricordi, V. G.; Freitas, C. S.; Perin, G.; Lenardão, E. J.; Jacob, R. G.; Savegnago, L.; Alves, D. Green Chem. 2012, 14, 1030. |
| [26] | Das, T. K.; Kundu, M.; Mondal, B.; Ghosh, P.; Das, S. Org. Biomol. Chem. 2022, 20, 208. |
| [27] | Fu, Z.; Hao, G.; Fu, Y.; He, D.; Tuo, X.; Guo, S.; Cai, H. Org. Chem. Front. 2020, 7, 590. |
| [28] | SacristánMartín, A.; Miguel, D.; Barbero, H.; Álvarez, C. M. Org. Lett. 2022, 24, 5879. |
| [29] | Xu, X.; Zhang, F.; Huang, S.; Zhang, Z.; Ke, F. Chin. J. Org. Chem. 2020, 40, 2912. (in Chinese) |
| [29] | (许秀枝, 张帆, 黄胜, 张志强, 柯方, 有机化学, 2020, 40, 2912.) |
| [30] | Baker, S. I.; Yaghoubi, M.; Bidwell, S. L.; Pierce, S. L.; Hratchian, H. P.; Baxter, R. D. J. Org. Chem. 2022, 87, 8492. |
| [31] | Molander, G. A.; Cavalcanti, L. N. J. Org. Chem. 2011, 76, 7195. |
| [32] | Plaçais, C; Kaldas, S. J.; Donnard, M.; Panossian, A. Chem.-Eur. J. 2023, 29, e202301420. |
| [33] | Si, T.; Cho, H.; Kim, H. Y.; Oh, K. Org. Lett. 2022, 24, 8531. |
| [34] | Murphy, J. M.; Liao, X.; Hartwig, J. F. J. Am. Chem. Soc. 2007, 129, 15434. |
| [35] | Hartsel, J. A.; Craft, D. T.; Chen, Q.; Ma, M.; Carlier, P. R. J. Org. Chem. 2012, 77, 3127. |
| [36] | Gong, L.; Li, C.; Yuan, F.; Liu, S.; Zeng, X. Org. Lett. 2022, 24, 3227. |
| [37] | Li, R.; Wang, Z. J.; Wang, L.; Ma, B. C.; Ghasimi, S.; Lu, H.; Landfester, K.; Zhang, K. A. ACS Catal. 2016, 6, 1113. |
| [38] | Sivendran, N.; Belitz, F.; Sowa Prendes, D.; Manu Martínez, Á.; Schmid, R.; Gooßen, L. J. Chem.-Eur. J. 2022, 28, e202103669. |
| [39] | Zhang, Q.; Chan, Y. Y.; Zhang, M.; Yeung, Y. Y.; Ke, Z. Angew. Chem., Int. Ed. 2022, 61, e202208009. |
| [40] | Maetani, S; Fukuyama, T; Ryu, I. Org. Lett. 2013, 15, 2754. |
| [41] | Feng, Y.; Luo, H.; Zheng, W.; Matsunaga, S.; Lin, L. ACS Catal. 2022, 12, 11089. |
| [42] | Jordan, A.; Denton, R. M.; Sneddon, H. F. Chem. Eng. 2020, 8, 2300. |
| [43] | Kumar, I; Sharma. R; Kumar. R; Sharma, U. Adv. Synth. Catal. 2018, 360, 2013. |
| [44] | Clarke, A. K.; Parkin, A.; Taylor, R. J, K; Unsworth, W. P; Rossi-Ashton, J. A. ACS Catal. 2020, 10, 5814. |
| [45] | Yan, P.; Zeng, R.; Bao, B.; Yang, X.; Zhu, L.; Pan, B.; Niu, S.; Qi, X.; Li, Y.; Ouyang, Q. Green Chem. 2022, 24, 9263. |
| [46] | Molander, G. A.; Cavalcanti, L. N. J. Org. Chem. 2011, 76, 623. |
| [47] | Zhang, X.; Wu, G.; Gao, W.; Ding, J.; Huang, X.; Liu, M.; Wu, H. Org. Lett. 2018, 20, 708. |
/
| 〈 |
|
〉 |