ARTICLES

Deboronative Selenylation, Bromination, or Hydroxylation of Organic Boronic Acids Facilitated by Tetrabutylammonium Tribromide under Transition Metal-Free Conditions

  • Yongsheng Tian ,
  • Lanfeng Wei ,
  • Jiawei Huang ,
  • Yu Wei ,
  • Liang Xu ,
  • Shuai Liu
Expand
  • a School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Enginering, Shihezi University, Shihezi, Xinjiang 832003
    b Bintuan Energy Development Institute, Shihezi University, Shihezi, Xinjiang 832003
    c Xinjiang Key Laboratory of Coal Mine Disasters Intelligent Prevention and Emergency Response, Xinjiang Institute of Engineering, Urumqi 830023

Received date: 2023-12-24

  Revised date: 2024-01-17

  Online published: 2024-02-20

Supported by

National Natural Science Foundation of China(22061036); National Natural Science Foundation of China(21963010)

Abstract

Divergent approaches for the convenient ipso-functionalization of organic boronic acids are presented, capitalizing on tetrabutylammonium tribromide (TBATB) under different, yet transition metal-free conditions. Through these methods, a wide array of organoborons can be efficiently converted into their corresponding selenylated, brominated, or hydroxylated products in moderate to excellent yields. The versatility of this strategy lies in its transition metal-free conditions, simple operation, and step-economic pathways, offering a promising idea for the ipso-functionalization of organoborons

Cite this article

Yongsheng Tian , Lanfeng Wei , Jiawei Huang , Yu Wei , Liang Xu , Shuai Liu . Deboronative Selenylation, Bromination, or Hydroxylation of Organic Boronic Acids Facilitated by Tetrabutylammonium Tribromide under Transition Metal-Free Conditions[J]. Chinese Journal of Organic Chemistry, 2024 , 44(6) : 1987 -1997 . DOI: 10.6023/cjoc202312023

References

[1]
(a) Zhu, C.; Falck, J. R. Adv. Synth. Catal. 2014, 356, 2395.
[1]
(b) Roscales, S.; Csákÿ, A. G. Chem. Soc. Rev. 2014, 43, 8215.
[1]
(c) Hooshmand, S. E.; Heidari, B.; Sedghi, R.; Varma, R. S. Green Chem. 2019, 21, 381.
[1]
(d) Hall, D. G. Chem. Soc. Rev. 2019, 48, 3475.
[2]
(a) Zhang, G.; Lv, G.; Li, L.; Chen, F.; Cheng, J. Tetrahedron Lett. 2011, 52, 1993.
[2]
(b) Barcellos, A. M.; Sacramento, M.; da Costa, G. P.; Perin, G.; João Lenardão, E.; Alves, D. Coord. Chem. Rev. 2021, 442, 214012.
[2]
(c) An, C.; Li, C.; Huang, X.; Gao, W.; Zhou, Y.; Liu, M.; Wu, H. Org. Lett. 2019, 21, 6710.
[2]
(d) Yang, Y.; Li, C.; Leng, T.; Huang, X.; Gao, W.; Zhou, Y.; Liu, M.; Wu, H. Adv. Synth. Catal. 2020, 362, 2168.
[2]
(e) Zhang, X.; Huang, X. B.; Gao, W. X.; Zhou, Y. B.; Liu, M. C.; Wu, H. Y. Adv. Synth. Catal. 2020, 362, 5639.
[2]
(f) Lai, J.; Yin, F.; Guo, Q.; Yuan, F.; Nian, B.; Zhang, M.; Wu, Z.; Zhang, H.; Tang, E. Org. Biomol. Chem. 2022, 20, 5104.
[2]
(g) Andrews, M. J.; Carpentier, A.; Slawin, A. M. Z.; Cordes, D. B.; Macgregor, S. A.; Watson, A. J. B. ACS Catal. 2023, 13, 11117.
[2]
(h) Sun, N.; Zheng, K.; Zhang, M.; Zheng, G.; Jin, L.; Hu, B.; Shen, Z.; Hu, X. Green Chem. 2023, 25, 2782.
[2]
(i) Wang, X.; Meng, J.; Zhao, D.; Tang, S.; Sun, K. Chin. Chem. Lett. 2023, 34, 107736.
[3]
(a) Li, Y.; Wang, M.; Jiang, X. Chin. J. Chem. 2020, 38, 1521.
[3]
(b) Freitas, C. S.; Barcellos, A. M.; Ricordi, V. G.; Pena, J. M.; Perin, G.; Jacob, R. G.; Lenardão, E. J.; Alves, D. Green Chem. 2011, 13, 2931.
[3]
(c) Lee, C.; Ahn, S.; Cheon, C. J. Org. Chem. 2013, 78, 12154.
[3]
(d) Ahn, S.; Lee, C.; Kim, N.; Cheon, C. J. Org. Chem. 2014, 79, 7277.
[3]
(e) Ren, Y.; Xu, B.; Zhong, Z.; Pittman, C. U.; Zhou, A. Org. Chem. Front. 2019, 6, 2023.
[3]
(f) Sun, N.; Zheng, K.; Sun, P.; Chen, Y.; Jin, L.; Hu, B.; Shen, Z.; Hu, X. Adv. Synth. Catal. 2021, 363, 3577.
[4]
(a) Xie, S.; Li, D.; Huang, H.; Zhang, F.; Chen, Y. J. Am. Chem. Soc. 2019, 141, 16237.
[4]
(b) Ranjan, P.; Pillitteri, S.; Coppola, G.; Oliva, M.; Van der Eycken, E. V.; Sharma, U. K. ACS Catal. 2021, 11, 10862.
[4]
(c) Iwata, Y.; Tanaka, Y.; Kubosaki, S.; Morita, T.; Yoshimi, Y. Chem. Commun. 2018, 54, 1257.
[4]
(d) Saba, S.; Rafique, J.; Braga, A. L. Adv. Synth. Catal. 2015, 357, 1446.
[5]
Yin, C.; Tang, S.; Mei, J.; Hu, X.; Zhang, H. Org. Chem. Front. 2023, 10, 3361.
[6]
Belal, M.; Sarkar, S.; Subramanian, R.; Khan, A. T. Org. Biomol. Chem. 2022, 20, 2562.
[7]
(a) Quibell, J. M.; Perry, G. J. P.; Cannas, D. M.; Larrosa, I. Chem. Sci. 2018, 9, 3860.
[7]
(b) Gao, S.; Bethel, T. K.; Kakeshpour, T.; Hubbell, G. E.; Jackson, J. E.; Tepe, J. J. J. Org. Chem. 2018, 83, 9250.
[8]
Naik, S.; Gopinath, R.; Goswami, M.; Patel, B. K. Org. Biomol. Chem. 2004, 2, 1670.
[9]
Saikia, I.; Borah, A. J.; Phukan, P. Chem. Rev. 2016, 116, 6837.
[10]
Ainley, A. D.; Challenger, F. J. Chem. Soc. (Resumed) 1930, 2171.
[11]
(a) Yao, M.; Kabalka, G. W.; Blevins, D. W.; Reddy, M. S.; Yong, L. Tetrahedron 2012, 68, 3738.
[11]
(b) Yao, M.; Reddy, M. S.; Yong, L.; Walfish, I.; Blevins, D. W.; Kabalka, G. W. Org. Lett. 2010, 12, 700.
[12]
(a) Wang, Z.; Wei, L.; Liu, J.; Wei, Y.; Xu, L. Org. Chem. Front. 2023, 10, 104.
[12]
(b) Pengcheng, D.; Liang, X. Chin. J. Org. Chem. 2021, 41, 4690. (in Chinese)
[12]
(代鹏程, 徐亮, 有机化学, 2021, 41, 4690.)
[13]
(a) Huang, J.; Li, X.; Xu, L.; Wei, Y. J. Org. Chem. 2023, 88, 3054.
[13]
(b) Li, X.; Huang, J.; Xu, L.; Liu, P.; Wei, Y. J. Org. Chem. 2022, 87, 10684.
[14]
(a) Molloy, J. J.; O’Rourke, K. M.; Frias, C. P.; Sloan, N. L.; West, M. J.; Pimlott, S. L.; Sutherland, A.; Watson, A. J. Org. Lett. 2019, 21, 2488.
[14]
(b) He, D.; Yao, J.; Ma, B.; Wei, J.; Hao, G.; Tuo, X.; Guo, S.; Fu, Z.; Cai, H. Green Chem. 2020, 22, 1559.
[14]
(c) An, R.; Liao, L.; Liu, X.; Song, S.; Zhao, X. Org. Chem. Front. 2018, 5, 3557.
[15]
(a) Fu, Z.; Yi, X.; Fang, Z.; Zhong, T.; He, D.; Guo, S.; Cai, H. Chem. Asian J. 2022, 17, e202200780.
[15]
(b) Wei, L.; Zhang, J.; Xu, L. ACS Sustain. Chem. Eng. 2020, 8, 13894.
[15]
(c) Zou, Y.; Chen, J.; Liu, X.; Lu, L.; Davis, R. L.; Jørgensen, K. A.; Xiao, W. Angew. Chem., Int. Ed. 2012, 51, 784.
[15]
(d) Pitre, S. P.; McTiernan, C. D.; Ismaili, H.; Scaiano, J. C. J. Am. Chem. Soc. 2013, 135, 13286.
[16]
Leng, T.; Wu, G.; Zhou, Y.-B.; Gao, W.; Ding, J.; Huang, X.; Liu, M.; Wu, H. Adv. Synth. Catal. 2018, 360, 4336.
[17]
Wang, R.; Wang, X.; Mao, S.; Zhao, Y.; Yuan, B.; Yang, X. Y.; Li, J.; Chen, Z. Adv. Synth. Catal. 2022, 364, 1607.
[18]
Bai, J. H.; Qi, X. J.; Sun, W.; Yu, T. Y.; Xu, P. F. Adv. Synth. Catal. 2021, 363, 2084.
[19]
Perin, G.; Soares, L. K.; Hellwig, P. S.; Silva, M. S.; Neto, J. S.; Roehrs, J. A.; Barcellos, T.; Lenardao, E. J. New J. Chem. 2019, 43, 6323.
[20]
Fu, Z.; Yin, J.; He, D.; Yi, X.; Guo, S.; Cai, H. Green Chem. 2022, 24, 130.
[21]
Ren, K.; Wang, M.; Wang, L. Org. Biomol. Chem. 2009, 7, 4858.
[22]
Wu, S.; Shi, J.; Zhang, C. Org. Biomol. Chem. 2019, 17, 7468.
[23]
Zhumagazy, S.; Zhu, C.; Yue, H.; Rueping, M. Synlett 2023, 34, 1381.
[24]
Kundu, D.; Ahammed, S.; Ranu, B. C. Org. Lett. 2014, 16, 1814.
[25]
Ricordi, V. G.; Freitas, C. S.; Perin, G.; Lenardão, E. J.; Jacob, R. G.; Savegnago, L.; Alves, D. Green Chem. 2012, 14, 1030.
[26]
Das, T. K.; Kundu, M.; Mondal, B.; Ghosh, P.; Das, S. Org. Biomol. Chem. 2022, 20, 208.
[27]
Fu, Z.; Hao, G.; Fu, Y.; He, D.; Tuo, X.; Guo, S.; Cai, H. Org. Chem. Front. 2020, 7, 590.
[28]
SacristánMartín, A.; Miguel, D.; Barbero, H.; Álvarez, C. M. Org. Lett. 2022, 24, 5879.
[29]
Xu, X.; Zhang, F.; Huang, S.; Zhang, Z.; Ke, F. Chin. J. Org. Chem. 2020, 40, 2912. (in Chinese)
[29]
(许秀枝, 张帆, 黄胜, 张志强, 柯方, 有机化学, 2020, 40, 2912.)
[30]
Baker, S. I.; Yaghoubi, M.; Bidwell, S. L.; Pierce, S. L.; Hratchian, H. P.; Baxter, R. D. J. Org. Chem. 2022, 87, 8492.
[31]
Molander, G. A.; Cavalcanti, L. N. J. Org. Chem. 2011, 76, 7195.
[32]
Plaçais, C; Kaldas, S. J.; Donnard, M.; Panossian, A. Chem.-Eur. J. 2023, 29, e202301420.
[33]
Si, T.; Cho, H.; Kim, H. Y.; Oh, K. Org. Lett. 2022, 24, 8531.
[34]
Murphy, J. M.; Liao, X.; Hartwig, J. F. J. Am. Chem. Soc. 2007, 129, 15434.
[35]
Hartsel, J. A.; Craft, D. T.; Chen, Q.; Ma, M.; Carlier, P. R. J. Org. Chem. 2012, 77, 3127.
[36]
Gong, L.; Li, C.; Yuan, F.; Liu, S.; Zeng, X. Org. Lett. 2022, 24, 3227.
[37]
Li, R.; Wang, Z. J.; Wang, L.; Ma, B. C.; Ghasimi, S.; Lu, H.; Landfester, K.; Zhang, K. A. ACS Catal. 2016, 6, 1113.
[38]
Sivendran, N.; Belitz, F.; Sowa Prendes, D.; Manu Martínez, Á.; Schmid, R.; Gooßen, L. J. Chem.-Eur. J. 2022, 28, e202103669.
[39]
Zhang, Q.; Chan, Y. Y.; Zhang, M.; Yeung, Y. Y.; Ke, Z. Angew. Chem., Int. Ed. 2022, 61, e202208009.
[40]
Maetani, S; Fukuyama, T; Ryu, I. Org. Lett. 2013, 15, 2754.
[41]
Feng, Y.; Luo, H.; Zheng, W.; Matsunaga, S.; Lin, L. ACS Catal. 2022, 12, 11089.
[42]
Jordan, A.; Denton, R. M.; Sneddon, H. F. Chem. Eng. 2020, 8, 2300.
[43]
Kumar, I; Sharma. R; Kumar. R; Sharma, U. Adv. Synth. Catal. 2018, 360, 2013.
[44]
Clarke, A. K.; Parkin, A.; Taylor, R. J, K; Unsworth, W. P; Rossi-Ashton, J. A. ACS Catal. 2020, 10, 5814.
[45]
Yan, P.; Zeng, R.; Bao, B.; Yang, X.; Zhu, L.; Pan, B.; Niu, S.; Qi, X.; Li, Y.; Ouyang, Q. Green Chem. 2022, 24, 9263.
[46]
Molander, G. A.; Cavalcanti, L. N. J. Org. Chem. 2011, 76, 623.
[47]
Zhang, X.; Wu, G.; Gao, W.; Ding, J.; Huang, X.; Liu, M.; Wu, H. Org. Lett. 2018, 20, 708.
Outlines

/