REVIEWS

Recent Advances in Strategies for Halide Atom Transfer (XAT) and Their Applications

  • Yifeng Jiang ,
  • Yanli Yin ,
  • Zhiyong Jiang
Expand
  • a College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001
    b School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007

Received date: 2024-01-29

  Revised date: 2024-02-06

  Online published: 2024-02-28

Supported by

National Natural Science Foundation of China(22171072); National Natural Science Foundation of China(21925103)

Abstract

Following the rapid advance of radical chemistry, a range of halogen atom transfer (XAT) reagents have been developed by chemists for alkyl and aryl halides, which typically feature strong bond strengths and high redox potentials. These reagents facilitate the extraction of halogen atoms from alkyl and aryl moieties via radical substitution pathways, thus generating radical species that undergo subsequent chemical transformations for the synthesis of valuable molecules. The unique reactivity and versatility of these XAT reagents have attracted much attention in organic synthesis. Recent reviews of XAT reagents have mainly focused on elucidating reaction mechanisms and classifying different types with limited exploration of activation strategies. In light of this, this paper provides a summary of the activation strategies for XAT reagents over the past three years. The discussion is organized into four aspects based on different strategies, namely single electron transfer, hydrogen atom transfer, energy transfer, and electron donor-acceptor (EDA) complexes. This review aims to address the research gaps in activation strategies of XAT reagents, providing new theoretical support and perspectives for the field.

Cite this article

Yifeng Jiang , Yanli Yin , Zhiyong Jiang . Recent Advances in Strategies for Halide Atom Transfer (XAT) and Their Applications[J]. Chinese Journal of Organic Chemistry, 2024 , 44(6) : 1733 -1759 . DOI: 10.6023/cjoc202401035

References

[1]
Tian, X.; Liu, Y.; Yakubov, S.; Schutte, J.; Chiba, S.; Barham, J. P. Chem. Soc. Rev. 2024, 53, 263.
[2]
(a) Kavita, K.; Das, P. K. J. Chem. Phys. 2002, 117, 2038.
[2]
(b) Liu, W.; Li, J.; Huang, C.-Y.; Li, C.-J. Angew. Chem., Int. Ed. 2020, 59, 1786.
[3]
(a) Zidan, M.; McCallum, T.; Swann, R.; Barriault, L. Org. Lett. 2020, 22, 8401.
[3]
(b) Deneny, P. J.; Kumar, R.; Gaunt, M. J. Chem. Sci. 2021, 12, 12812.
[4]
Julia, F.; Constantin, T.; Leonori, D. Chem. Rev. 2022, 122, 2292.
[5]
Sachidanandan, K.; Niu, B.; Laulhé, S. ChemCatChem 2023, 15, e202300860.
[6]
Yan, S.; Yu, W.; Zhang, J.; Fan, H.; Lu, Z.; Zhang, Z.; Wang, T. J. Org. Chem. 2022, 87, 1574.
[7]
(a) Buettner, C. S.; Schnurch, M.; Bica-Schr?der, K. J. Org. Chem. 2022, 87, 11042.
[7]
(b) Sun, X.; Zheng, K. Nat. Commun. 2023, 14, 6825.
[7]
(c) Zhai, S.; Wang, R.; Dong, Q.; Cheng, J.; Zheng, M.; Wang, X. Org. Chem. Front. 2023, 10, 4816.
[8]
Poletti, L.; Massi, A.; Ragno, D.; Droghetti, F.; Natali, M.; De Risi, C.; Bortolini, O.; Di Carmine, G. Org. Lett. 2023, 25, 4862.
[9]
Hossain, M. M.; Shaikh, A. C.; Moutet, J.; Gianetti, T. L. Nat. Synth. 2022, 1, 147.
[10]
Zhang, T.; Huang, H. Angew. Chem., Int. Ed. 2023, 62, e202310114.
[11]
Mao, B.; Zhang, X. Y.; Wei, Y.; Shi, M. Chem. Commun. 2022, 58, 3653.
[12]
Jiao, Y.; Shi, X.; Yu, S. Chem. Commun. 2023, 59, 13336.
[13]
Fan, Q.; Huang, J.; Lin, S.; Chen, Z.-H.; Li, Q.; Yin, B.; Wang, H. ACS Catal. 2023, 14, 299.
[14]
Wang, T.; Yu, W.; Lan, J.; Wang, H.; Jiang, Z.; Li, Y.; Fu, J. Chem Catal. 2023, 3, 100619.
[15]
Huang, L. Q.; Yang, D. Y.; Dong, C. L.; He, Y. H.; Guan, Z. Adv. Synth. Catal. 2023, 365, 2553.
[16]
Wang, Z.; Li, X.; Li, W.; Cao, Y.; Li, H. Org. Chem. Front. 2023, 10, 4250.
[17]
(a) Yedase, G. S.; Jha, A. K.; Yatham, V. R. J. Org. Chem. 2022, 87, 5442.
[17]
(b) Tian, X.; Kaur, J.; Yakubov, S.; Barham, J. P. ChemSusChem 2022, 15, e202200906.
[18]
Wang, S.; Ren, D.; Liu, Z.; Yang, D.; Wang, P.; Gao, Y.; Qi, X.; Lei, A. Nat. Synth. 2023, 2, 1202.
[19]
Bellotti, P.; Huang, H. M.; Faber, T.; Laskar, R.; Glorius, F. Chem. Sci. 2022, 13, 7855.
[20]
Maust, M.; Blakey, S. ACS Catal. 2024, 14, 2582.
[21]
Geniller, L.; Taillefer, M.; Jaroschik, F.; Prieto, A. ACS Catal. 2023, 13, 8624.
[22]
Jiao, R.-Q.; Ding, Y.-N.; Li, M.; Shi, W.-Y.; Chen, X.; Zhang, Z.; Wei, W.-X.; Li, X.-S.; Gong, X.-P.; Luan, Y.-Y.; Liu, X.-Y.; Liang, Y.-M. Org. Lett. 2023, 25, 6099.
[23]
Jiang, H.-L.; Yang, Y.-H.; Zhao, Y.-N.; He, Y.-H.; Guan, Z. Org. Chem. Front. 2022, 9, 6611.
[24]
Du, H. W.; Du, Y. D.; Zeng, X. W.; Shu, W. Angew. Chem. Int. Ed. 2023, 62, e202308732.
[25]
Liu, W.; Lavagnino, M. N.; Gould, C. A.; Alcázar, J.; MacMillan, D. W. C. Science 2021, 374, 1258.
[26]
Cao, S.; Kim, D.; Lee, W.; Hong, S. Angew. Chem. Int. Ed. 2023, 62, e202312780.
[27]
(a) Zhang, Z. Q.; Sang, Y. Q.; Wang, C. Q.; Dai, P.; Xue, X. S.; Piper, J. L.; Peng, Z. H.; Ma, J. A.; Zhang, F. G.; Wu, J. J. Am. Chem. Soc. 2022, 144, 14288.
[27]
(b) Zhang, Z. Q.; Wang, C. Q.; Li, L. J.; Piper, J. L.; Peng, Z. H.; Ma, J. A.; Zhang, F. G.; Wu, J. Chem. Sci. 2023, 14, 11546.
[28]
Wan, T.; Capaldo, L.; Ravelli, D.; Vitullo, W.; de Zwart, F. J.; de Bruin, B.; Noel, T. J. Am. Chem. Soc. 2023, 145, 991.
[29]
Maity, A.; Studer, A. Chem. Sci. 2023, 14, 7675.
[30]
Caiger, L.; Zhao, H.; Constantin, T.; Douglas, J. J.; Leonori, D. ACS Catal. 2023, 13, 4985.
[31]
(a) Cai, A.; Yan, W.; Wang, C.; Liu, W. Angew. Chem. Int. Ed. 2021, 60, 27070.
[31]
(b) Zeng, X.; Wang, C.; Yan, W.; Rong, J.; Song, Y.; Xiao, Z.; Cai, A.; Liang, S. H.; Liu, W. ACS Catal. 2023, 13, 2761.
[32]
Gould, C. A.; Pace, A. L.; MacMillan, D. W. C. J. Am. Chem. Soc. 2023, 145, 16330.
[33]
Levitre, G.; Granados, A.; Molander, G. A. Green Chem. 2023, 25, 560.
[34]
Wu, M. C.; Li, M. Z.; Chen, J. Y.; Xiao, J. A.; Xiang, H. Y.; Chen, K.; Yang, H. Chem. Commun. 2022, 58, 11591.
[35]
Wang, X. Y.; He, Y. Q.; Zhou, Y.; Lu, L.; Song, X. R.; Zhou, Z. Z.; Tian, W. F.; Xiao, Q. Org. Lett. 2023, 25, 3847.
[36]
Tripathy, A. R.; Bisoyi, A.; P, A.; Venugopal, S.; Yatham, V. R. ACS Org. Inorg. Au 2023, DOI: 10.1021/acsorginorgau.3c00062.
[37]
(a) Górski, B.; Barthelemy, A.-L.; Douglas, J. J.; Juliá, F.; Leonori, D. Nat. Catal. 2021, 4, 623.
[37]
(b) Zhang, Z.; Gorski, B.; Leonori, D. J. Am. Chem. Soc. 2022, 144, 1986.
[38]
(a) Shen, J.; Yue, X.; Xu, J.; Li, W. Org. Lett. 2023, 25, 1994.
[38]
(b) Guo, Y.; Zhu, J.; Wang, Y.; Li, Y.; Hu, H.; Zhang, P.; Xu, J.; Li, W. ACS Catal. 2024, 14 619.
[39]
Luridiana, A.; Mazzarella, D.; Capaldo, L.; Rincon, J. A.; Garcia-Losada, P.; Mateos, C.; Frederick, M. O.; Nuno, M.; Jan Buma, W.; Noel, T. ACS Catal. 2022, 12, 11216.
[40]
Maiti, S.; Roy, S.; Ghosh, P.; Kasera, A.; Maiti, D. Angew. Chem. Int. Ed. 2022, 61, e202207472.
[41]
Han, J.; Han, J.; Chen, S.; Zhong, T.; He, Y.; Yang, X.; Wang, G.; Zhu, C.; Xie, J. Nat. Synth. 2022, 1, 475.
[42]
Liu, D.; Liu, Z. R.; Wang, Z. H.; Ma, C.; Herbert, S.; Schirok, H.; Mei, T. S. Nat. Commun. 2022, 13, 7318.
[43]
Constantin, T.; Górski, B.; Tilby, M. J.; Chelli, S.; Juliá, F.; Llaveria, J.; Gillen, K. J.; Zipse, H.; Lakhdar, S.; Leonori, D. Science 2022, 377, 1323.
[44]
(a) Li, S. S.; Jiang, Y. S.; Chen, L. N.; Chen, D. N.; Luo, X. L.; Pan, C. X.; Xia, P. J. Org. Lett. 2023, 25, 7009.
[44]
(b) Luo, X. L.; Huang, M. S.; Li, S. S.; Jiang, Y. S.; Chen, L. N.; Li, S. H.; Xia, P. J. Org. Lett. 2023, 25, 6407.
[45]
Cong, F.; Sun, G.-Q.; Ye, S.-H.; Hu, R.; Rao, W.; Koh, M. J. ChemRxiv 2023, DOI: 10.26434/chemrxiv-2023-mpqdw.
[46]
Zhao, G.; Lim, S.; Musaev, D. G.; Ngai, M. Y. J. Am Chem. Soc. 2023, 145, 8275.
[47]
Jiao, X.; Huang, Z.; Meng, W.; Zhu, S.; Chu, L. Org. Chem. Front. 2023, 10, 4542.
[48]
(a) Treacy, S. M.; Vaz, D. R.; Noman, S.; Tard, C.; Rovis, T. Chem. Sci. 2023, 14, 1569.
[48]
(b) Qu, C.-H.; Yan, X.; Li, S.-T.; Liu, J.-B.; Xu, Z.-G.; Chen, Z.-Z.; Tang, D.-Y.; Liu, H.-X.; Song, G.-T. Green. Chem. 2023, 25, 3453.
Outlines

/