Chinese Journal of Organic Chemistry >
Research Progress of Tetralactam Macrocycle-Based Molecular Recognition and Applications
Received date: 2024-01-16
Revised date: 2024-02-21
Online published: 2024-03-13
Supported by
National Natural Science Foundation of China(22174059); National Natural Science Foundation of China(22201128); Provincial Natural Science Foundation of Hunan(2022JJ40363); Provincial Natural Science Foundation of Hunan(2022JJ40365); Science and Technology Innovation Program of Hunan Province(2022RC1230)
Molecular recognition is ubiquitous in nature and plays a crucial role in numerous biological processes and supramolecular chemistry. Due to the significant weakening of specific non-covalent interactions (e.g., hydrogen bonding) by the polar environment of water, the use of artificial macrocyclic hosts for molecular identification in the water is challenging. Tetralactam macrocycles are artificial macrocyclic hosts with polar binding sites inside the hydrophobic cavity, which can realize the recognition of hydrophilic molecules in the water by mimicking the molecular recognition of bioreceptors. Through the synergistic effect of hydrophobic effect and hydrogen bonds, it can selectively recognize drug molecules, saccharides, dyes, organic pollutants, disease markers and other substances in the aqueous environment. The research advances of tetralactam macrocycles in molecular recognition and application over the last 30 years are summarized, with a particular emphasis on its molecular recognition and application in the water, hoping to provide a reference for the development of tetralactam macrocycles in the future.
Jing Guo , Shiyao Li , Huan Yao , Liupan Yang , Lili Wang . Research Progress of Tetralactam Macrocycle-Based Molecular Recognition and Applications[J]. Chinese Journal of Organic Chemistry, 2024 , 44(6) : 1777 -1785 . DOI: 10.6023/cjoc202401021
| [1] | Wagner, B. D. Host-Guest Chemistry-Supramolecular Inclusion in Solution, De Gruyter, 2020. |
| [2] | Li, D.-H.; Smith, B. D. Beilstein J. Org. Chem. 2019, 15, 1086. |
| [3] | Liu, W.; Samanta, S. K.; Smith, B. D.; Isaacs, L. Chem. Soc. Rev. 2017, 46, 2391. |
| [4] | Luo, Q. H. Macrocyclic Chemistry-Host-Guest Compound and Supramolecular, Science Press, Beijing, 2009. (in Chinese) |
| [4] | (罗勤慧, 大环化学- -主-客体化合物和超分子, 科学出版社, 北京, 2009.) |
| [5] | Yazaki, K.; Sei, Y.; Akita, M.; Yoshizawa, M. Nat. Commun. 2014, 5, 5179. |
| [6] | Biedermann, F.; Schneider, H.-J. Chem. Rev. 2016, 116, 5216. |
| [7] | Persch, E.; Dumele, O.; Diederich, F. Angew. Chem., Int. Ed. 2015, 54, 3290. |
| [8] | Livnah, O.; Bayer, E. A.; Wilchek, M.; Sussman, J. L. Proc. Natl. Acad. Sci. U. S. A. 1993, 90, 5076. |
| [9] | Escobar, L.; Ballester, P. Chem. Rev. 2021, 121, 2445. |
| [10] | Yang, L.-P.; Wang, X.; Yao, H.; Jiang, W. Acc. Chem. Res. 2019, 53, 198. |
| [11] | Shen, Z.-Y.; Li, S.-Y.; Yang, L.-P.; Wang, L.-L.; Yao, H. Chin. J. Org. Chem. 2024, 44, 1151. (in Chinese) |
| [11] | (谌泽亚, 李诗瑶, 杨留攀, 王力立, 姚欢, 有机化学, 2024, 44, 1151.) |
| [12] | Huang, G.; Chen, Z.; Wei, X.; Chen, Y.; Li, X.; Zhong, H.; Tan, M. Chin. J. Org. Chem. 2020, 40, 614. (in Chinese) |
| [12] | (黄国保, 陈志林, 韦贤生, 陈钰, 李秀英, 仲辉, 谭明雄, 有机化学, 2020, 40, 614.) |
| [13] | Purse, B. W.; Rebek, J. Jr, Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 10777. |
| [14] | Adriaenssensa, L.; Ballester, P. Chem. Soc. Rev. 2013, 42, 3261. |
| [15] | Butterfield, S. M.; Rebek, J., Jr. J. Am. Chem. Soc. 2006, 128, 15366. |
| [16] | Gassensmith, J. J.; Arunkumar, E.; Barr, L.; Baumes, J. M.; DiVittorio, K. M.; Johnson, J. R.; Noll, B. C.; Smith, B. D. J. Am. Chem. Soc. 2007, 129, 15054. |
| [17] | Wang, Y.-F.; Wang, S.-M.; Zhang, X.; Nian, H.; Zheng, L.-S.; Wang, X.; Schreckenbach, G.; Jiang, W.; Yang, L.-P.; Wang, L.-L. Angew. Chem., Int. Ed. 2023, 62, e202310115. |
| [18] | Allen, W. E.; Gale, P. A.; Brown, C. T.; Lynch, V. M.; Sessler, J. L. J. Am. Chem. Soc. 1996, 118, 12471. |
| [19] | Escobar, L.; Sun, Q.; Ballester, P. Acc. Chem. Res. 2023, 56, 500. |
| [20] | Verdejo, B.; Gil-Ramírez, G.; Ballester, P. J. Am. Chem. Soc. 2009, 131, 3178. |
| [21] | Hernández-Alonso, D.; Zankowski, S.; Adriaenssens, L.; Ballester, P. Org. Biomol. Chem. 2013, 13, 1022. |
| [22] | Pe?uelas-Haro, G.; Ballester, P. Chem. Sci. 2019, 10, 2413. |
| [23] | Xiong, Y.; Li, M.; Xiong, P.; Yang, M.; Qing, G.; Sun, T. Prog. Chem. 2014, 26, 48. (in Chinese) |
| [23] | (熊雨婷, 李闵闵, 熊鹏, 杨梦, 卿光焱, 孙涛垒, 化学进展, 2014, 26, 48.) |
| [24] | Klein, E.; Crump, M. P.; Davis, A. P. Angew. Chem., Int. Ed. 2005, 44, 298. |
| [25] | Shorthill, B. J.; Avetta, C. T.; Glass, T. E. J. Am. Chem. Soc. 2004, 126, 12732. |
| [26] | Ferrand, Y.; Crump, M. P.; Davis, A. P. Science 2007, 318, 619. |
| [27] | Ríos, P.; Mooibroek, T. J.; Carter, T. S.; Williams, C.; Wilson, M. R.; Crump, M. P.; Davis, A. P. Chem. Sci. 2017, 8, 4056. |
| [28] | Davis, A. P. Chem. Soc. Rev. 2020, 49, 2531. |
| [29] | Tromans, R. A.; Samanta, S. K.; Chapman, A. M.; Davis, A. P. Chem. Sci. 2020, 11, 3223. |
| [30] | Huang, G.-B.; Wang, S.-H.; Ke, H.; Yang, L.-P.; Jiang, W. J. Am. Chem. Soc. 2016, 138, 14550. |
| [31] | Wang, L.-L.; Chen, Z.; Liu, W.-E.; Ke, H.; Wang, S.-H.; Jiang, W. J. Am. Chem. Soc. 2017, 139, 8436. |
| [32] | Liu, W.-E.; Chen, Z.; Yang, L.-P.; Au-Yeung, H. Y.; Jiang, W. Chem. Commun. 2019, 55, 9797. |
| [33] | Yang, L. P.; Ke, H.; Yao, H.; Jiang, W. Angew. Chem., Int. Ed. 2021, 60, 21404. |
| [34] | Li, S.-Y.; Wang, D.; Qiu, Y.; Wang, L.-L.; Yang, L.-P. Curr. Opin. Green Sustainable Chem. 2023, 40. |
| [35] | Yao, H.; Ke, H.; Zhang, X.; Pan, S.-J.; Li, M.; Yang, L.-P.; Schreckenbach, G.; Jiang, W. J. Am. Chem. Soc. 2018, 140, 13466. |
| [36] | Zhao, C.-D.; Yao, H.; Li, S.-Y.; Du, F.; Wang, L.-L.; Yang, L.-P. Chin. Chem. Lett. 2024, 35, 108879. |
| [37] | Hunter, C. A. J. Chem. Soc.,Chem. Commun. 1991, 749. |
| [38] | Johnston, A. G.; Leigh, D. A.; Pritchard, R. J.; Deegan, M. D. Angew. Chem., Int. Ed. Engl. 1995, 34, 1209. |
| [39] | Johnston, A. G.; Leigh, D. A.; Murphy, A.; Smart, J. P.; Deegan, M, D., J. Am. Chem. Soc. 1996, 118, 10662. |
| [40] | Biscarini, F.; Cavallini, M.; Leigh, D. A.; León, S.; Teat, S. J.; Wong, J. K. Y.; Zerbetto, F. J. Am. Chem. Soc. 2002, 124, 225. |
| [41] | Zhai, C.; Xu, C.; Cui, Y.; Wojtas, L.; Liu, W. Chem.-Eur. J. 2023, 29, e202300524. |
| [42] | Liu, W.; Oliver, A. G.; Smith, B. D. J. Am. Chem. Soc. 2018, 140, 6810. |
| [43] | Wang, L.-L.; Tu, Y.-K.; Yao, H.; Jiang, W. Beilstein J. Org. Chem. 2019, 15, 1460. |
| [44] | Wang, L.-L.; Tu, Y.-K.; Valkonen, A.; Rissanen, K.; Jiang, W. Chin. J. Chem. 2019, 37, 892. |
| [45] | Ke, C.; Destecroix, H.; Crump, M. P.; Davis, A. P. Nat. Chem. 2012, 4, 718. |
| [46] | Peck, E. M.; Liu, W.; Spence, G. T.; Shaw, S. K.; Davis, A. P.; Destecroix, H.; Smith, B. D. J. Am. Chem. Soc. 2015, 137, 8668. |
| [47] | Allott, C.; Adams, H.; Bernad, P. L. Jr; Hunter, C. A.; Rotgerc, C.; Thomasa, J. A. Chem. Commun. 1998, 2449. |
| [48] | Destecroix, H.; Renney, C. M.; Mooibroek, T. J.; Carter, T. S.; Stewart, P. F. N.; Crump, M. P.; Davis, A. P. Angew. Chem., Int. Ed. 2015, 54, 2057. |
| [49] | Fernandes, A.; Viterisi, A.; Aucagne, V.; Leigh, D. A.; Papot, S. Chem. Commun. 2012, 48, 2083. |
| [50] | Dong, J.; Davis, A. P. Angew. Chem., Int. Ed. 2020, 60, 8035. |
| [51] | Fiona, H. A.; Carver, J.; Hunter, C. A.; Osborne, N. J. Chem. Commun. 1996, 2529. |
| [52] | Fernandes, A.; Viterisi, A.; Coutrot, F.; Potok, S.; Leigh, D. A.; Aucagne, V.; Papot, S. Angew. Chem., Int. Ed. 2009, 48, 6443. |
| [53] | Dempsey, J. M.; Zhai, C.; McGarraugh, H. H.; Schreiber, C. L.; Stoffel, S. E.; Johnson, A.; Smith, B. D. Chem. Commun. 2019, 55, 12793. |
| [54] | Zhang, H.; Wang, L.-L.; Pang, X.-Y.; Yang, L.-P.; Jiang, W. Chem. Commun. 2021, 57, 13724. |
| [55] | Li, S.-Y.; Yao, H.; Hu, H.; Chen, W.-J.; Yang, L.-P.; Wang, L.-L. Chem. Commun. 2023, 59, 7204. |
| [56] | Yao, H.; Li, S.-Y.; Zhang, H.; Pang, X.-Y.; Lu, J.-L.; Chen, C.; Jiang, W.; Yang, L.-P.; Wang, L.-L. Chem. Commun. 2023, 59, 5411. |
| [57] | Yao, H.; Qin, J.; Wang, Y.-F.; Wang, S.-M.; Yi, L.-H.; Li, S.-Y.; Du, F.; Yang, L.-P.; Wang, L.-L. Chin. Chem. Lett. 2024, 35, 109154. |
| [58] | Mandal, P. K.; Kauffmann, B.; Destecroix, H.; Ferrand, Y.; Davis, A. P.; Huc, I. Chem. Commun. 2016, 52, 9355. |
| [59] | Van Eker, D.; Samanta, S. K.; Davis, A. P. Chem. Commun. 2020, 56, 9268. |
| [60] | Liu, W.; Johnson, A.; Smith, B. D. J. Am. Chem. Soc. 2018, 140, 3361. |
| [61] | Federica, B.; Patrick, S.; Soumen, S.; Tiddo, M.; Thomas, H.-J.; Kejia, S.; Bradley, S.; Davis, A. P.; Balduzzi, F.; Stewart, P.; Samanta, S. K.; Mooibroek, T. J.; Hoeg-Jensen, T.; Shi, K.; Smith, B. D.; Davis, A. P. Angew. Chem., Int. Ed. 2023, 62, e202314373. |
| [62] | Roland, F. M.; Peck, E. M.; Rice, D. R.; Smith, B. D. Bioconjugate Chem. 2017, 28, 1093. |
| [63] | Liu, W.; Gómez-Durán, C. F. A.; Smith, B. D. J. Am. Chem. Soc. 2017, 139, 6390. |
| [64] | Shaw, S. K.; Liu, W.; Gómez Durán, C. F. A.; Schreiber, C. L.; Betancourt Mendiola, M. L.; Zhai, C.; Roland, F. M.; Padanilam, S. J.; Smith, B. D. Chem.-Eur. J. 2018, 24, 13821. |
| [65] | Dharmarwardana, M.; Dempsey, J. M.; Padilla-Coley, S.; Jarvis, T. S.; Shi, K.; Atkinson, K. M.; Smith, B. D. Chem. Commun. 2021, 57, 13518. |
/
| 〈 |
|
〉 |