ARTICLES

Design, Synthesis, and Preliminary Anti-tumor Activity Studies of Novel 1,2-Disubstituted Hydrazines

  • Jianling Hu ,
  • Chao Zhang ,
  • Wenda Zhu ,
  • Yepu He ,
  • Shuling Peng ,
  • Zhenqiang Chen ,
  • Mingyue Li ,
  • Zhiju Liu ,
  • Heru Chen
Expand
  • a Institute of Traditional Chinese Medicine and Natural Products, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, Guangzhou 510632
    b Guangzhou PharmCherub Medical Science and Technology Incorporated Corporation, Guangzhou 510663
    c Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632
    d State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632

Received date: 2024-01-13

  Revised date: 2024-02-21

  Online published: 2024-03-20

Supported by

Natural Science Foundation of Guangdong Province(2021A1515011238)

Abstract

Thirteen 1,2-disubstituted hydrazines, including ten 2-aryl-1-(4-(N-isopropyl) aminoformyl)benzyl hydrazines (9a~9j), two 2-aryl methylene-1-(4-(N-isopropyl)aminoformyl)benzyl hydrazines (13a~13b), and 2-(4-methyl)benzoyl- 1-(4-(N-isopropyl)aminoformyl)benzyl hydrazine (14) have been designed and synthesized. By employing methyl thiazolyl tetrazolium (MTT) assay, generally all the title compounds were shown with better anti-cancer activity against rat glioma cells against the five cancer cell lines except both C6 and SW620 cell lines among the 13 title compounds, its IC50 value against MDA-MB-231 cells was (10.8±0.9) μmol/L, whilst 13b was the most active against C6 cells with IC50 value of (15.9±3.1) μmol/L, and 9e was the most active against SW620 cells with IC50 value of (62.7±1.4) μmol/L. It was found that when the substituent in aryl group of 9a~9j was electron-withdrawal, the anti-cancer activity of compound with substituent at meta-position was better that at para-position (9g>9f, 9i>9h). Intriguingly, when the substituent was an electron-donor group, this law was lost. It was also identified that the anti-cancer activity against SW620 cells will be enhanced with the existence of a weak electron-donor inductive group. Mouse embryonic fibroblasts (3T3) were applied here. Compounds 9a, 9b, 13a, and 13b were displayed sensitive to this cell line. IC50 values of 9a, and 13a were (24.9±1.2), and (13.9±1.7) μmol/L, respectively.

Cite this article

Jianling Hu , Chao Zhang , Wenda Zhu , Yepu He , Shuling Peng , Zhenqiang Chen , Mingyue Li , Zhiju Liu , Heru Chen . Design, Synthesis, and Preliminary Anti-tumor Activity Studies of Novel 1,2-Disubstituted Hydrazines[J]. Chinese Journal of Organic Chemistry, 2024 , 44(6) : 1870 -1883 . DOI: 10.6023/cjoc202401013

References

[1]
Zeller, P.; Gutmann, H.; Hegedüs, B.; Kaiser, A.; Langemann, A.; Müller, M. Experientia 1963, 19, 129.
[2]
Samuel, D.; Spivack, M. D. Ann. Intern. Med. 1974, 81, 795.
[3]
Sieber, S. M.; Correa, P.; Dalgard, D. W.; Adamson, R. H. Cancer Res. 1978, 38, 2125.
[4]
Herman, E. H.; Lee, I. Toxicol. Appl. Pharmacol. 1972, 22, 484.
[5]
Chabner, B. A.; Sponzo, R.; Hubbard, S.; Canellos, C. P.; Young, R. C.; Schein, P. S.; DeVita, V. T. Cancer Chemother. Rep. 1973, 57, 361.
[6]
Parvinen, L. Exp. Mol. Pathol. 1979, 30, 1.
[7]
Brule, G.; Schlumberger, J. R.; Griscelli, C. Cancer Chemother. Rep. 1963, 44, 31.
[8]
DeVita, V. T.; Hahn, M. A.; Oliverio, V. T. Proc. Soc. Exp. Biol. Med. 1965, 120, 561.
[9]
Green, A. L. Biochem. Pharmacol. 1964, 13, 249.
[10]
Swaffar, D. S.; Horstman, M. G.; Jaw, J.-Y.; Thrall, B. D.; Meadows, G. G.; Harker, W. G.; Yost, G. S. Cancer Res. 1989, 49, 2442.
[11]
Dunn, D. L.; Lubet, R. A.; Prough, R. A. Cancer Res. 1979, 39, 4555.
[12]
Prough, R. A.; Brown, M. I.; Dannan, G. A.; Guengerich, F. P. Cancer Res. 1984, 44, 543.
[13]
Fiala, E. S. Cancer (Phila.) 1977, 40, 2436.
[14]
Weinstock, L. T.; Cheng, C. C. J. Med. Chem. 1979, 22, 595.
[15]
Chen, Z. X.; Riggs, A. D. J. Biol. Chem. 2011, 286, 18347.
[16]
Wolter, M.; Klapars, A.; Buchwald, S. L. Org. Lett. 2001, 3, 3803.
[17]
Meyer, K. G. Synlett 2004, 2355.
[18]
Garcia-Ramos, Y.; Proulx, C.; Lubell, W. D. Can. J. Chem. 2012, 90, 985.
[19]
Kupcsik, L. Methods Mol. Biol. 2011, 740, 13.
[20]
Yao, M.; Walker, G.; Gamcsik, M. P. Cytotechnology 2023, 75, 381.
[21]
Chalouni, C.; Doll, S. J. Exp. Clin. Cancer Res. 2018, 37, 20.
[22]
Mamantov, A. Prog. React. Kinet. Mech. 2013, 38(1), 1.
[23]
Orvos, J.; Pancik, F.; Fischer, R. Eur. J. Org. Chem. 2023, 26, e202300049.
[24]
Rozengurt, E.; Po, C. C. Nature 1976, 261, 701.
[25]
Spano, A.; Sciola, L. Cell Div. 2023, 18, 18.
[26]
Lawley, P. D.; Brookes, P. Biochem. J. 1968, 109, 433.
[27]
Hargreaves, R. H. J.; Hartley, J. A.; Butler, J. Front. Biosci.- Landmark 2000, 5, E172.
[28]
Wang, R.; Zhang, C.; Zheng, C.; Li, H.; Xie, X.; Jin, Y.; Liu, Z.; Chen, H. Bioorg. Chem. 2019, 83, 461.
[29]
Lam, M. S.; Lee, H. W.; Chan, A. S. C.; Kwong, F. Y. Tetrahedron Lett. 2008, 49, 6192.
[30]
Wang, Z.; Skerlj, R. T.; Bridger, G. J. Tetrahedron Lett. 1999, 40, 3543.
Outlines

/