ARTICLES

Boryl Radical-Promoted Synthesis of Biaryls and Benzylcarboxylic Acids Methyl Ester via C—C Bond Formation Reactions

  • Wenduo Li ,
  • Na'na Wei ,
  • Nan Feng
Expand
  • a Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources in Longdong, College of Petroleum and Chemical Engineering, Longdong University, Qingyang, Gansu 745000
    b Gansu Key Laboratory of Conservation and Utilization of Biological Resources and Ecological Restoration in Longdong, College of Life Science & Technology, Longdong University, Qingyang, Gansu 745000
    c College of Petroleum and Chemical Engineering, Longdong University, Qingyang, Gansu 745000
* E-mail:

Received date: 2024-02-22

  Revised date: 2024-03-24

  Online published: 2024-05-11

Supported by

Natural Science Foundation of Gansu Province(22JR5RM203); Doctor Foundation of Longdong University(XYBYZK2221); Doctor Foundation of Longdong University(XYBYZK2224); Youth Scientific and Technical Innovation Foundation of Longdong University(XYZK2303); Innovation Fund Project of Gansu Education Department(2024A-164)

Abstract

A facile route for the formation of C—C bonds with tetraarylborates as boryl radical precursors under organophotoredox conditions is developed. This strategy has been verified to be applicable not only for the preparation of symmetrical and unsymmetrical biaryls, but also for direct carboxylation of a range of free benzyl alcohols. Control experiments and mechanism studies indicated that aryl boron radical species is a reactive intermediate.

Cite this article

Wenduo Li , Na'na Wei , Nan Feng . Boryl Radical-Promoted Synthesis of Biaryls and Benzylcarboxylic Acids Methyl Ester via C—C Bond Formation Reactions[J]. Chinese Journal of Organic Chemistry, 2024 , 44(6) : 1853 -1861 . DOI: 10.6023/cjoc202402012

References

[1]
(a) Ravelli, D.; Protti, S.; Fagnoni, M. Chem. Rev. 2016, 116, 9850.
[1]
(b) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075.
[1]
(c) Campeau, L.-C.; Hazari, N. Organometallics 2019, 38, 3.
[1]
(d) Milligan, J. A.; Phelan, J. P.; Badir, S. O.; Molander, G. A. Angew. Chem., Int. Ed. 2019, 58, 6152.
[1]
(e) Sestelo, J. P.; Sarandeses, L. A. Molecules 2020, 25, 4500.
[1]
(f) Buglioni, L.; Raymenants, F.; Slattery, A.; Zondag, S. D. A.; No?l, T. Chem. Rev. 2022, 122, 2752.
[1]
(g) Pitre, S. P.; Overman, L. E. Chem. Rev. 2022, 122, 1717.
[1]
(h) Tabassum, S.; Zahoor, A. F.; Ahmad, S.; Noreen, R.; Khan, S. G.; Ahmad, H. Mol. Diversity 2022, 26, 647.
[1]
(i) Bellotti, P.; Huang, H.-M.; Faber, T.; Glorius, F. Chem. Rev. 2023, 123, 4237.
[2]
(a) Renaud, P.; Sibi, M. P. Radicals in Organic Synthesis, Wiley-VCH, Weinheim, 2001.
[2]
(b) Chatgilialoglu, C.; Studer, A. Encyclopedia of Radicals in Chemistry, Biology and Materials, John Wiley & Sons, Chichester, 2012.
[2]
(c) Yan, M.; Lo, J. C.; Edwards, J. T.; Baran, P. S. J. Am. Chem. Soc. 2016, 138, 12692.
[2]
(d) Studer, A.; Curran, D. P. Angew. Chem., Int. Ed. 2016, 55, 58.
[2]
(e) Zard, S. Z. Org. Lett. 2017, 19, 1257.
[2]
(f) Romero, K. J.; Galliher, M. S.; Pratt, D. A.; Stephenson, C. R. J. Chem. Soc. Rev. 2018, 47, 7851.
[2]
(g) Wang, S.; Tang, S.; Lei, A. Sci. Bull. 2018, 63, 1006.
[2]
(h) Leifert, D.; Studer, A. Angew. Chem., Int. Ed. 2020, 59, 74.
[2]
(i) Wu, X.; Zhu, C. Acc. Chem. Res. 2020, 53, 1620.
[2]
(j) Yu, X.-Y.; Chen, J.-R.; Xiao, W.-J. Chem. Rev. 2021, 121, 506.
[2]
(k) Chen, J.; Zhu, G.; Wu, J. Acta Chim. Sinica 2023, 81, 1609. (in Chinese)
[2]
(陈健强, 朱钢国, 吴劼, 化学学报, 2023, 81, 1609.)
[3]
(a) Hall, D. G. Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials, 2nd ed., Vols. 1 and 2, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2011.
[3]
(b) Dhillon, R. S. Hydroboration and Organic Synthesis, Springer, Germany, 2007.
[4]
(a) Aramaki, Y.; Omiya, H.; Yamashita, M.; Nakabayashi, K.; Ohkoshi, S.-I.; Nozaki, K. J. Am. Chem. Soc. 2012, 134, 19989.
[4]
(b) Wu, C.; Hou, X.; Zheng, Y.; Li, P.; Lu, D. J. Org. Chem. 2017, 82, 2898.
[4]
(c) Duret, G.; Quinlan, R.; Bisseret, P.; Blanchard, N. Chem. Sci. 2015, 6, 5366.
[4]
(d) Duan, K.; Yan, X.; Liu, Y.; Li, Z. Adv. Synth. Catal. 2018, 360, 2781.
[4]
(e) Shi, D.; Wang, L.; Xia, C.; Liu, C. Chin J. Org. Chem. 2020, 40, 3605. (in Chinese)
[4]
(史敦发, 王露, 夏春谷, 刘超, 有机化学, 2020, 40, 3605.)
[4]
(f) Crespi, S.; Fagnoni, M. Chem. Rev. 2020, 120, 9790.
[4]
(g) Yu, Y.-J.; Zhang, F.-L.; Peng, T.-Y.; Wang, C.-L.; Cheng, J.; Chen, C.; Houk, K. N.; Wang, Y.-F. Science 2021, 371, 1232.
[4]
(h) Peng, T.-Y.; Zhang, F.-L.; Wang, Y.-F. Acc. Chem. Res. 2023, 56, 169.
[4]
(i) Jin, J.; Xia, H.; Zhang, F.; Wang, Y.-F. Chin J. Org. Chem, 2020, 40, 2185. (in Chinese)
[4]
(靳继康, 夏慧敏, 张凤莲, 汪义丰, 有机化学, 2020, 40, 2185.)
[5]
(a) Yasu, Y.; Koike, T.; Akita, M. Adv. Synth. Catal. 2012, 354, 3414.
[5]
(b) Tellis, J. C.; Primer, D. N.; Molander, G. A. Science 2014, 345, 433.
[5]
(c) Huang, H.; Zhang, G.; Gong, L.; Zhang, S.; Chen, Y. J. Am. Chem. Soc. 2014, 136, 2280.
[5]
(d) Huo, H.; Harms, K.; Meggers, E. J. Am. Chem. Soc. 2016, 138, 6936.
[5]
(e) Stache, E. E.; Rovis, T.; Doyle, A. G. Angew. Chem., Int. Ed. 2017, 56, 3679.
[6]
(a) Lima, F.; Kabeshov, M. A.; Tran, D. N.; Battilocchio, C.; Sedelmeier, J.; Sedelmeier, G.; Schenkel, B.; Ley, S. V. Angew. Chem., Int. Ed. 2016, 55, 14085.
[6]
(b) Lima, F.; Sharma, U. K.; Grunenberg, L.; Saha, D.; Johannsen, S.; Sedelmeier, J.; Eycken, E. V. V. d.; Ley, S. V. Angew. Chem., Int. Ed. 2017, 56, 15136.
[6]
(c) Shu, C.; Noble, A.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2019, 58, 3870.
[6]
(d) Kaiser, D.; Noble, A.; Fasano, V.; Aggarwal, V. K. J. Am. Chem. Soc. 2019, 141, 14104.
[6]
(e) Sato, Y.; Nakamura, K.; Sumida, Y.; Hashizume, D.; Hosoya, T.; Ohmiya, H. J. Am. Chem. Soc. 2020, 142, 9938.
[6]
(f) Shi, D.; Xia, C.; Liu, C. CCS Chem. 2020, 2, 1718.
[7]
(a) Li, G.-X.; Morales-Rivera, C. A.; Wang, Y.; Gao, F.; He, G.; Liu, P.; Chen, G. Chem. Sci. 2016, 7, 6407.
[7]
(b) Xie, S.; Li, D.; Huang, H.; Zhang, F.; Chen, Y. J. Am. Chem. Soc. 2019, 141, 16237.
[8]
(a) Geske, D. H. J. Phys. Chem. 1959, 63, 1062.
[8]
(b) Geske, D. H. J. Phys. Chem. 1962, 66, 1743.
[9]
(a) Abley, P.; Halpern, J. J. Chem. Soc. D 1971, 20, 1238.
[9]
(b) Mizuno, H.; Sakurai, H.; Amayaa, T.; Hirao, T. Chem. Commun. 2006, 5042.
[9]
(c) Dhital, R. N.; Sakurai, H. Asian J. Org. Chem. 2014, 3, 668.
[9]
(d) Beil, S. B.; M?hle, S.; Endersa, P.; Waldvogel, S. R. Chem. Commun. 2018, 54, 6128.
[9]
(e) Lu, Z.; Lavendomme, R.; Burghaus, O.; Nitschke, J. R. Angew. Chem., Int. Ed. 2019, 58, 9073.
[9]
(f) Music, A.; Baumann, A. N.; Spie?, P.; Plantefol, A.; Jagau, T. C.; Didier, D. J. Am. Chem. Soc. 2020, 142, 4341.
[9]
(g) Baumann, A. N.; Music, A.; Dechent, J.; Müller, N.; Jagau, T. C.; Didier, D. Chem.-Eur. J. 2020, 26, 8382.
[9]
(h) Gerleve, C.; Studer, A. Angew. Chem., Int. Ed. 2020, 59, 15468.
[9]
(i) Music, A.; Baumann, A. N.; Boser, F.; Müller, N.; Matz, F.; Jagau, T. C.; Didier, D. Chem.-Eur. J. 2021, 27, 4322.
[9]
(j) Matz, F.; Music, A.; Didier, D.; Jagau, T.-C. Electrochem. Sci. Adv. 2022, 2, e2100032.
[9]
(k) Didier, D. Synthesis 2023, 55, 232.
[10]
(a) Li, W.-D.; Wu, Y.; Li, S.-J.; Jiang, Y.-Q.; Li, Y.-L.; Lan, Y.; Xia, J.-B. J. Am. Chem. Soc. 2022, 144, 8551.
[10]
(b) Liu, X.; Lu, M.; Guo, X.; Xu, H.; Xu, J. Chem.-Eur. J. 2023, 29, e202302041.
[10]
(c) Yue, F.; Ma, H.; Ding, P.; Song, H.; Liu, Y.; Wang, Q. ACS Cent. Sci. 2023, 9, 2268.
[11]
(a) Li, W.-D.; Jiang, Y.-Q.; Li, Y.-L.; Xia, J.-B. CCS Chem. 2021, 3, 1710.
[11]
(b) Gu, Z.-Y.; Li, W.-D.; Li, Y.-L.; Cui, K.; Xia, J.-B. Angew. Chem., Int. Ed. 2023, 62, e202213281.
[11]
(c) Li, Y.-L.; Li, W.-D.; Gu, Z.-Y.; Chen, J.; Xia, J.-B. ACS Catal. 2020, 10, 1528.
[12]
Henkel, T.; Brunne, R. M.; Müller, H.; Reichel, F. Angew. Chem., Int. Ed. 1999, 38, 643.
[13]
(a) Ran, C.-K.; Niu, Y.-N.; Song, L.; Wei, M.-K.; Cao, Y.-F.; Luo, S.-P.; Yu, Y.-M.; Liao, L.-L.; Yu, D.-G. ACS Catal. 2022, 12, 18.
[13]
(b) Ye, J.-H.; Ju, T.; Huang, H.; Liao, L.-L.; Yu, D.-G. Acc. Chem. Res. 2021, 54, 2518.
[13]
(c) Zhang, Z.; Ye, J.-H.; Ju, T.; Liao, L.-L.; Huang, H.; Gui, Y.-Y.; Zhou, W.-J.; Yu, D.-G. ACS Catal. 2020, 10, 10871.
[14]
(a) Fan, Z.; Chen, S.; Zou, S.; Xi, C. ACS Catal. 2022, 12, 2781.
[14]
(b) Fan, Z.; Zhang, Z.; Xi, C. ChemSusChem 2020, 13, 6201.
[15]
(a) Jin, Y.; Toriumi, N.; Iwasawa, N. ChemSusChem 2021, 14, e202102095.
[15]
(b) Dou, Q.; Wang, T.; Li, S.; Fang, L.; Zhai, H.; Cheng, B. Chin J. Org. Chem. 2022, 42, 4257. (in Chinese)
[15]
(窦谦, 汪太民, 李嗣锋, 房丽晶, 翟宏斌, 程斌, 有机化学, 2022, 42, 4257.)
[16]
Moustafa, M. S.; Al-Mousawi, S. M.; El-Seedi, H. R.; Elnagdi, M. H. Mini-Rev. Med. Chem. 2018, 18, 992.
[17]
(a) Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature 2012, 492, 234.
[17]
(b) Luo, J.; Zhang, J. ACS Catal. 2016, 6, 873.
[18]
Bunda, S.; Udvardy, A.; Voronova, K.; Joó, F. J. Org. Chem. 2018, 83, 15486.
[19]
Li, C.; Shi, Y.; Chen, Q.; Zhang, K.; Yang, G. J. Org. Chem. 2023, 88, 2306.
[20]
Wang, Y.-H.; Xu, M.-C.; Liu, J.; Zhang, L.-J.; Zhang, X.-M. Tetrahedron 2015, 71, 9598.
[21]
Velasco, R.; Silva López, C.; Nieto Faza, O.; Sanz, R. Chem.-Eur. J. 2016, 22, 15058.
[22]
Abe, T.; Mino, T.; Watanabe, K.; Yagishita, F.; Sakamoto, M. Eur. J. Org. Chem. 2014, 2014, 3909.
[23]
Niwa, T.; Ochiai, H.; Watanabe, Y.; Hosoya, T. J. Am. Chem. Soc. 2015, 137, 14313.
[24]
Hannah, J.; Ruyle, W.; Jones, H.; Matzuk, A.; Kelly, K.; Witzel, B.; Holtz, W.; Houser, R.; Shen, T. J. Med. Chem. 1978, 21, 1093.
[25]
Shigeno, M.; Hanasaka, K.; Tohara, I.; Izumi, K.; Yamakoshi, H.; Kwon, E.; Nozawa-Kumada, K.; Kondo, Y. Org. Lett. 2022, 24, 809
[26]
He, Z. T.; Hartwig, J. F. J. Am. Chem. Soc. 2019, 141, 11749.
Outlines

/