Chinese Journal of Organic Chemistry >
Se/ZrO2-Catalyzed Oxidative Polymerization of Aniline
Received date: 2024-04-16
Revised date: 2024-06-06
Online published: 2024-07-02
Supported by
Jiangsu Provincial Natural Science Foundation General Project(BK20191220); Jiangsu Provincial Excellent Science and Technology Innovation Team(2021); Jiangsu Province International Cooperation Project(BZ2023038); Natural Science Foundation of the Jiangsu Higher Education Institutions of China(19KJB210020)
Polyanilines (PANIs) are widely employed materials that are synthesized via the oxidative polymerization of anilines. However, the present synthetic methods always require the use of chemical oxidants and employ HCl/NaOH as the acid-base regulator, resulting in a large amount of waste salt and residual impurities in the material that affect its performance. These drawbacks are unfavorable for industrial applications. A novel method for the preparation of PANIs, i.e. the Se/ZrO2- catalyzed oxidative polymerization of aniline with O2 free of the acid-base regulator is developed. The relatively safe and green features of the method make it more practical for large-scale applications. Researches showed that PANIs prepared by this method could be used as the support to anchor palladium catalyst, and its activity was as good as that of the materials synthesized via traditional methods.
Key words: selenium; zirconia; catalyzed oxidation; aniline; polyaniline
Daming Yong , Tingting Zuo , Qichao Wu , Xu Zhang . Se/ZrO2-Catalyzed Oxidative Polymerization of Aniline[J]. Chinese Journal of Organic Chemistry, 2024 , 44(11) : 3392 -3398 . DOI: 10.6023/cjoc202404022
| [1] | (a) Bai L.; Shi Y.; Zhang X.; Cao X.; Jia J.; Shi H.; Lu W. Analyst 2023, 148, 3359. |
| [1] | (b) Zhang Y.-Y.; Zhang J.; Wang G.-L.; Wang Z.-F.; Luo Z.-W.; Zhang M. Rare Metals 2023, 42, 2344. |
| [1] | (c) Zheng Q.-Y.; Yang M.; Dong X.; Zhang X.-F.; Cheng X.-L.; Huo L.-H.; Major Z.; Xu Y.-M. Rare Metals 2023, 42, 536. |
| [1] | (d) Miao Z.; Wang P.; Zhong A.; Yang M.; Xu Q.; Hao S.; Hu X. J. Electroanal. Chem. 2015, 756, 153. |
| [2] | (a) Zhu A.; Zhang J.; Situ B.; Ma Y.; Ji Z.; Peng Z.; Yan Z.; Tu Y. J. Polym. Res. 2023, 30, 417. |
| [2] | (b) Zhang W.; Xia T.; Huo X.; Li X.; Park S.; Lin L.; Diao G.; Piao Y. J. Electroanal. Chem. 2022, 920, 116615. |
| [2] | (c) Zhang W.; Kong Y.; Jin X.; Yan B.; Diao G.; Piao Y. Electrochim. Acta 2020, 331, 135345. |
| [2] | (d) Lyu L.; Chai H.; Seong K.-D.; Lee C.; Kang J.; Zhang W.; Piao Y. Electrochim. Acta 2018, 291, 256. |
| [3] | (a) Sun P.; Shen X.; Xu P.; Huang W.; Xu Q. Appl. Surf. Sci. 2024, 655, 159649. |
| [3] | (b) Chen Y.; Lei J.; Zhai Y.; Zhu Z.; Wu W.; Lu X. Chin. Chem. Lett. 2023, 34, 108305. |
| [3] | (c) Zhang T.; Zhang P.; Liao Z.; Wang F.; Wang J.; Wang M.; Zschech E.; Zhuang X.; Schmidt O. G.; Feng X. Chin. Chem. Lett. 2022, 33, 3921. |
| [3] | (d) Gautam J.; Liu Y.; Gu J.; Ma Z.; Dahal B.; Chishti A. N.; Ni L.; Diao G.; Wei Y. J. Colloid Interface Sci. 2022, 614, 642. |
| [4] | (a) Yuan G.; Xi Z.; Wang C.; Sun X.; Han J.; Guo R. Acta Phys.-Chim. Sin. 2023, 39, 2212061. |
| [4] | (b) Li W.; Wang F.; Shi Y.; Yu L. Chin. Chem. Lett. 2023, 34, 107505. |
| [4] | (c) Zeng Z.; Chen Y.; Zhu X.; Yu L. Chin. Chem. Lett. 2023, 34, 107728. |
| [4] | (d) Zhang Y.; Sun H.; Chen Y.; Shi Y.; Yu L. Org. Lett. 2023, 25, 7928. |
| [4] | (e) Chen Y.; Yu L.; Zhou H. J. Phys. Chem. C 2022, 126, 17084. |
| [5] | (a) Li X.; Liu H.; Meng S.; Liu X.; Liu X.; He R.; Wang F. Cream. Int. 2024, 50, 12361. |
| [5] | (b) Yu S.; Liu Y.; Mo R.; Li Y.; Zhou Z.; Zhang L.; Fan B.; Cao Y. New J. Chem. 2024, 48, 4810. |
| [5] | (c) Yu H.; Xu Z.; Fang T.; Zhang M.; Xu Y.; Liu J.; Tan X. Polym. Adv. Technol. 2024, 35, e6307. |
| [5] | (d) Li C.; Li Y.; Chen Q.; Sun D.; Li H.; Chen W.; Yan J.; Wu G.; Yuan X.; Wang S.; He Y.; Yu H. Prog. Org. Coat. 2024, 187, 108173. |
| [6] | Oh W. K.; Kim S.; Kwon O.; Jang J. J. Nanosci. Nanotechnol. 2011, 11, 4254. |
| [7] | (a) Zhou Y.; Zhang Y.-H.; Ma J.-S.; Yu M.-P.; Qiu H. Int. J. Miner.,Metall. Mater. 2018, 25, 1329. |
| [7] | (b) Li Y.; Cao S.; Fan L.; Han J.; Wang M.; Guo R. J. Colloid. Interface Sci. 2018, 527, 241. |
| [8] | (a) Zhang Y.; Li W.; Hu Z.; Jing X.; Yu L. Chin. Chem. Lett. 2024, 35, 108938. |
| [8] | (b) Meng X.; Zhang Y.; Zhou H.; Yu L. ACS Sustainable Chem. Eng. 2022, 10, 7658. |
| [9] | (a) Han H. B.; Zhou S. S.; Zhang D. J.; Feng S.-W.; Li L.-F.; Liu K.; Feng W.-F.; Nie J.; Li H.; Huang X.-J.; Armand M.; Zhou Z.-B. J. Power Sources 2011, 196, 3623. |
| [9] | (b) Ghosh S. K.; Waghoo G.; Kalita A.; Balgude D.; Kumar K. R. Prog. Org. Coat. 2012, 73, 70. |
| [9] | (c) Liu J.; Cai Y.; Pang H.; Cao B.; Luo C.; Hu Z.; Xiao C.; Zhang H.; Lv F.; Cao Y.; Yu L. Chin. Chem. Lett. 2022, 33, 4061. |
| [10] | (a) Pei C.; Chen S.; Fu D.; Zhao Z.-J.; Gong J. Chem. Rev. 2024, 124, 2955. |
| [10] | (b) Gu Y.; Wang L.; Xu B.-Q.; Shi H. Chin. J. Catal. 2023, 54, 1. |
| [10] | (c) Yang F.; Tian X.; Luo W.; Feng L. Coord. Chem. Rev. 2023, 478, 214980. |
| [11] | (a) Liu Y.; Tang D.; Cao K.; Yu L.; Han J.; Xu Q. J. Catal. 2018, 360, 250. |
| [11] | (b) Chen Y.; Li L.; Zhang L.; Han J. Colloid Polym. Sci. 2018, 296, 567. |
| [11] | (c) Shi F.; Yan F.; Zhang X.; Liu R.; Jiang G.; Li J.; Malinick A.; Cheng Q.; Yang Z. Chem. Commun. 2023, 59, 8294. |
| [12] | Li H.-F.; Yu K.-W.; Jing X.-B.; Duan L.; Zhang Y.-Y. Rare Metals 2024, 43, 1337. |
| [13] | (a) Li H.; Cao H.; Chen T.; Zhang X.; Shi Y. Mol. Catal. 2020, 483, 110715. |
| [13] | (b) Qiu C.; Sun Y.; Xu Y.; Zhang B.; Zhang X.; Yu L.; Su C. ChemSusChem 2021, 14, 3344. |
| [13] | (c) Yan J.; Fang W.; Wei Z.; Chi J.; Chen M.; Jiang Z.; Jiang K.; Shen S.; Shangguan W. Appl. Catal., B 2023, 339, 123155. |
| [13] | (d) Wang Y.; Ma J.-X.; Ren J.; Zhang D.; Xu F.-Y.; Zhang K.; Cao Z.-Q.; Sun Q.-J.; Li G.-D.; Wu S.-W.; Chen H.-H. Rare Metals 2024, 43, 2648. |
| [14] | (a) Gallo-Rodriguez C.; Rodríguez J. B. Synthesis 2024, 56, 2295. |
| [14] | (b) Pacu?a-Miszewska A. J.; Sancineto L. In Organochalcogen Compounds, Eds.: Lenard?o, E. J.; Santi, C.; Perin, G.; Alves, D. Elsevier, 2022, Chapter 7, p 219. |
| [14] | (c) Xiao X.; Guan C.; Xu J.; Fu W.; Yu L. Green Chem. 2021, 23, 4647. |
| [14] | (d) H. Cao, R. Qian, L. Yu, Catal. Sci. Technol. 2020, 10, 3113. |
| [14] | (e) Singh F. V.; Wirth T. Catal. Sci. Technol. 2019, 9, 1073. |
| [14] | (f) Shao L.; Li Y.; Lu J.; Jiang X. Org. Chem. Front. 2019, 6, 2999. |
| [14] | (g) Guo R.; Liao L.; Zhao X. Molecules 2017, 22, 835. |
| [15] | (a) Chen X.; Zhuang S.; Yan W.; Zeng Z.; Feng J.; Cao H.; Yu L. Chin. Chem. Lett. 2024, 35, 109635. |
| [15] | (b) Zhou W.; Li P.; Liu J.; Yu L. Ind. Eng. Chem. Res. 2020, 59, 10763. |
| [15] | (c) Yang Y.; Fan X.; Cao H.; Chu S.; Zhang X.; Xu Q.; Yu L. Catal. Sci. Technol. 2018, 8, 5017. |
| [15] | (d) Li P.; Cao K.; Jing X.; Liu Y.; Yu L. New J. Chem. 2021, 45, 17241. |
| [16] | (a) Chen X.; Mao J.; Liu C.; Chen C.; Cao H.; Yu L. Chin. Chem. Lett. 2020, 31, 3205. |
| [16] | (b) Zhu Z.; Wang W.; Zeng L.; Zhang F.; Liu J. Catal. Commun. 2020, 142, 106031. |
| [16] | (c) Liu M.; Zhang X.; Chu S.; Ge Y.; Huang T.; Liu Y.; Yu L. Chin. Chem. Lett. 2022, 33, 205. |
| [17] | Yong D.; Tian J.; Yang R.; Wu Q.; Zhang X. Chin. J. Org. Chem. 2024, 44, 1343 (in Chinese). |
| [17] | (雍达明, 田杰, 杨瑞洪, 吴启超, 张旭, 有机化学, 2024, 44, 1343.) |
| [18] | Zhang Y.; Sun H.; Yang Y.; Li H.; Shi Y.; Yu L. Catal. Sci. Technol. 2023, 13, 3791. |
| [19] | (a) Yuan Y.; Zhang S.; Sun Z.; Su Y.; Ma Q.; Yuan Y.; Jia X. Org. Lett. 2020, 22, 6294. |
| [19] | (b) Lv B.; Gao P.; Zhang S.; Jia X.; Wang M.; Yuan Y. Org. Chem. Front. 2021, 8, 5440. |
| [19] | (c) Lu Q.; Shi G.; Zhou H.; Yuan E.; Chen C.; Ji L. Appl. Catal., A 2022, 630, 118441. |
| [19] | (d) Chen Y.; Chen C.; Liu Y.; Yu L. Chin. Chem. Lett. 2023, 34, 108489. |
| [19] | (e) Li X.; Hua H.; Liu Y.; Yu L. Org. Lett. 2023, 25, 6720. |
| [20] | (a) Liu F.; Feng G.; Lin M.; Wang C.; Hu B.; Qi C. J. Colloid Interface Sci. 2014, 435, 83. |
| [20] | (b) Liu F.; Zuo S.; Xia X.; Sun J.; Zou Y.; Wang L.; Li C.; Qi C. J. Mater. Chem. A 2013, 1, 4089. |
| [20] | (c) Wang H.; Kong W.; Zhu W.; Wang L.; Yang S.; Liu F. Catal. Commun. 2014, 50, 87. |
| [20] | (d) Yu L.; Han Z.; Ding Y. Org. Process Res. Dev. 2016, 20, 2124. |
| [21] | Kantam M. L.; Roy M.; Roy S.; Sreedhar B.; Madhavendra S. S.; Choudary B. M.; De R. L. Tetrahedron 2007, 63, 8002. |
| [22] | Gao G.; Han J.; Yu L.; Xu Q. Synlett 2019, 30, 1703. |
| [23] | (a) Xu T.-Y.; Zhang Q.-F.; Jiang D.-H.; Liang Q.-X.; Lu C.-S.; Cen J.; Li X.-N. RSC Adv. 2014, 4, 33347. |
| [23] | (b) Ding X.; Li M.; Jin J.; Huang X.; Wu X.; Feng L. Chin. Chem. Lett. 2022, 33, 2687. |
| [23] | (c) Qiao W.; Zha M.; Yang Y.; Hu G.; Feng L. Chem. Commun. 2022, 58, 10651. |
| [23] | (d) Xue J.; Wu X.; Feng L. Chem. Commun. 2022, 58, 2371. |
| [23] | (e) Feng Y.; Lu S.; Fu L.; Yang F.; Feng L. Chem. Sci. 2024, 15, 2123. |
| [24] | Yu L.; Huang Y.; Wei Z.; Ding Y.; Su C.; Xu Q. J. Org. Chem. 2015, 80, 8677. |
| [25] | (a) Schweitzer-Chaput B.; Sud A.; Pintér á.; Dehn S.; Schulze P.; Klussmann M. Angew. Chem., Int. Ed. 2013, 52, 13228. |
| [25] | (b) Lippincott D. J.; Trejo-Soto P. J.; Gallou F.; Lipshutz B. H. Org. Lett. 2018, 20, 5094. |
| [25] | (c) Cao H.; Li P.; Jing X.; Zhou H. Chin. J. Org. Chem. 2022, 42, 3890 (in Chinese). |
| [25] | (曹洪恩, 李培梓, 景崤壁, 周宏伟, 有机化学, 2022, 42, 3890.) |
| [25] | (d) Wang F.; Qian R.; Yu L. React. Chem. Eng. 2023, 8, 849. |
| [26] | (a) Deng X.; Qian R.; Zhou H.; Yu L. Chin. Chem. Lett. 2021, 32, 1029. |
| [26] | (b) Liu F.; Zhan J.; Sun Y.; Jing X. Chin. J. Org. Chem. 2021, 41, 2099 (in Chinese). |
| [26] | (刘峰, 詹杰, 孙扬阳, 景崤壁, 有机化学, 2021, 41, 2099.) |
| [26] | (c) Zhou W.; Xiao X.; Liu Y.; Zhang X. Chin. J. Org. Chem. 2022, 42, 1849 (in Chinese). |
| [26] | (周文见, 肖芯蕊, 刘永红, 张旭, 有机化学, 2022, 42, 1849.) |
| [26] | (d) Zhang X.; Zuo T.; Yu L. ChemistrySelect 2022, 7, e202203514. |
| [27] | (a) Das T. N. J. Phys. Chem. A 2005, 109, 3344. |
| [27] | (b) Zhang X.; Wei Z.; Yu L. React. Chem. Eng. 2023, 8, 1700. |
| [28] | Mu S.; Chen C.; Wang J. Synth. Met. 1997, 88, 249. |
| [29] | (a) Xiao X.; Shao Z.; Yu L. Chin. Chem. Lett. 2021, 32, 2933. |
| [29] | (b) Ding W.; Wang S.; Gu J.; Yu L. Chin. Chem. Lett. 2023, 34, 108043. |
| [29] | (c) Xian L.; Li Q.; Li T.; Yu L. Chin. Chem. Lett. 2023, 34, 107878. |
| [29] | (d) Yin Y.; Quan X.; Cheng Y.; Yang Z.; Zhu J.; Fang W. Food Chem. 2023, 426, 136603. |
| [29] | (e) Li J.; Shi Q.; Xue Y.; Zheng M.; Liu L.; Geng T.; Gong D.; Zhao M. Chin. Chem. Lett. 2024, 35, 109239. |
| [30] | (a) Lu F.-D.; Chen J.; Jiang X.; Chen J.-R.; Lu L.-Q.; Xiao W.-J. Chem. Soc. Rev. 2021, 50, 12808. |
| [30] | (b) Firsan S. J.; Sivakumar V.; Colacot T. J. Chem. Rev. 2022, 122, 16983. |
| [30] | (c) Wang Y.; He Y.; Zhu S. Acc. Chem. Res. 2023, 56, 3475. |
| [30] | (d) Zeng Z.; Liao C.; Yu L. Chin. Chem. Lett. 2024, 35, 109349. |
| [31] | Dilauro G.; García S. M.; Tagarelli D.; Vitale P.; Perna F. M.; Capriati V. ChemSusChem 2018, 11, 3495. |
| [32] | Barbero M.; Dughera S. Tetrahedron 2018, 74, 5758. |
/
| 〈 |
|
〉 |