Chinese Journal of Organic Chemistry >
Recent Progress on Fluorescent Probes for the Detection of Methylglyoxal
Received date: 2024-03-03
Revised date: 2024-05-15
Online published: 2024-07-17
Supported by
Science and Technology Research Program of Department of Education of Hubei Province(Q20214504); Talent Introduction Fund of Hubei Polytechnic University(20xjz10R)
Methylglyoxal (MGO), as a highly active carbonyl compound, plays an important role in physiological and patho- logical processes. As a glycosylation agent, MGO can react with proteins, DNAs and lipids to form advanced glycation end products (AGEs), which leads to protein dysfunctions and cell death, and then causes a series of diseases, such as cardiovascular disease, inflammation, diabetes and so on. Therefore, it is important to develop an efficient, rapid and in situ method for detecting intracellular MGO. Fluorescent probes have been widely used in the detection of MGO in biological systems due to their advantages of good selectivity, high sensitivity and non-invasiveness. In this review, the research progress on fluorescence probes of MGO is summarized and the design concept, recognition mechanism and biological application are emphasized in recent years. Finally, the prospect to design and applications of fluorescence probes for MGO is also discussed.
Yaping Wang , Yanling Fan , Yongqi Ren , Yulin Xu . Recent Progress on Fluorescent Probes for the Detection of Methylglyoxal[J]. Chinese Journal of Organic Chemistry, 2024 , 44(11) : 3299 -3308 . DOI: 10.6023/cjoc202403003
| [1] | Kalapos M. P. Toxicol. Lett. 1999, 110, 145. |
| [2] | Falone S.; D'Alessandro A.; Mirabilio A.; Petruccelli G.; Cacchio M.; Ilio C. D.; Loreto S. D.; Amicarelli F. PLoS One 2012, 7, e31401. |
| [3] | Jia X.-M.; Olson D. J. H.; Ross A. R. S.; Wu L.-Y. FASEB J. 2006, 20, 1555. |
| [4] | Gao Y.; Wang Y. Biochemistry 2006, 45, 15654. |
| [5] | Cantero A.; Portero-Otin M.; Ayala V.; Auge N.; Sanson M.; Elbaz M.; Thiers J.; Pamplona R.; Salvayre R.; Negre-Salvayre A. FASEB J. 2007, 21, 3096. |
| [6] | Rabbani N.; Thornalley; P. J. Amino Acids 2012, 42, 1133. |
| [7] | Biswas A.; Wang B.; Miyagi M.; Nagaraj R.H. Biochem. J. 2008, 409, 771. |
| [8] | Matafome P.; Sena C.; Seica R. Endocrine 2013, 43, 472. |
| [9] | (a) Matafome P.; Santos-Silva D.; Crisóstomo J.; Rodrigues T.; Rodrigues L.; Sena C.; Pereira P.; Seica R.; Arch. Physiol. Biochem. 2012, 118, 58. |
| [9] | (b) Dhar A.; Dhar I.; Desai K. M.; Wu L.-Y. Br. J. Pharmacol. 2010, 161, 843. |
| [9] | (c) Singh R.; Barden A.; Mori T.; Beilin L. Diabetologia 2001, 44, 129. |
| [9] | (d) Du J.; Suzuki H.; Nagase F.; Akhand A. A.; Nakashima I. Free Radic. Biol. Med. 2001, 31, 469. |
| [10] | (a) Chen Y.; Hu A.; Yang L.-Y.; Li Z.-Y.; Yan K. Chin. J. Org. Chem. 2017, 37, 1939 (in Chinese). |
| [10] | (陈燚, 胡奥晗, 杨凌毅, 李早英, 严琨, 有机化学, 2017, 37, 1939.) |
| [10] | (b) Rabbani N.; Thornalley P. J. Biochem. Soc. Trans. 2014, 42, 425. |
| [10] | (c) Kilhovd B. K.; Juutilainen A.; Lehto S.; Rnnemaa T.; Torjesen P. A.; Hanssen K. F.; Laakso M. Atherosclerosis 2009, 205, 590. |
| [11] | Brouwers O.; Niessen P. M.; Haenen G.; Miyata T.; Brownlee M.; Stehouwer C. D.; Mey J. G. D.; Schalkwijk C.G. Diabetologia 2010, 53, 989. |
| [12] | (a) Mclellan A. C.; Phillips S. A.; Thornalley P. J. Anal. Biochem. 1992, 206, 17. |
| [12] | (b) Chaplen F. W. R.; Fahl W. E.; Cameron D. C. Anal. Biochem. 1996, 238, 171. |
| [12] | (c) Nemet I.; Varga-Defterdarovi L.; Turk Z. Clin. Biochem. 2004, 37, 875. |
| [13] | Wild R.; Ooi L.; Velandai S. G. M. Anal. Bioanal. Chem. 2012, 403, 2577. |
| [14] | (a) Li Y.-T.; Zhao X.-J.; Jiang Y.-R.; Yang B.-Q. New J. Chem. 2018, 42, 19478. |
| [14] | (b) Zhou L.; Chen Y.; Shao B.; Cheng J.; Li X. Front. Chem. Sci. Eng. 2022, 16, 34. |
| [14] | (c) Yang X.; Lu X.; Wang J.; Zhang Z.; Du X.; Zhang J.; Wang J. J. Agric. Food Chem. 2022, 70, 3047. |
| [15] | (a) Li J.-J.; Ban L.-F.; Tang L.-J. Chin. J. Org. Chem. 2021, 41, 241 (in Chinese). |
| [15] | (李娇娇, 班立夫, 汤立军, 有机化学, 2021, 41, 241.) |
| [15] | (b) Hou J.; Qian M.; Zhao H.; Li Y.; Liao Y.; Han G.; Xu Z.; Wang F.; Song Y.; Liu Y. Anal. Chim. Acta 2018, 1024, 169. |
| [15] | (c) Wei Y.; Wang X.; Shi W.; Chen R.; Zheng L.; Wang Z.; Chen K.; Gao L. Eur. J. Med. Chem. 2021, 226, 113828. |
| [16] | (a) Liu X.; Li N.; Li M.; Chen H.; Zheng K. Coord. Chem. Rev. 2020, 404, 213109.1. |
| [16] | (b) Wei C.; Zhang P.-Z.; Li X.-L. Chin. J. Org. Chem. 2019, 39, 3375 (in Chinese). |
| [16] | (魏超, 张平竹, 李小六, 有机化学, 2019, 39, 3375.) |
| [16] | (c) Chen E.-Q.; Tang Y.-H.; Wang L.; Ren J.-B.; Lin W.-Y. Chin. J. Org. Chem. 2021, 41, 1200 (in Chinese). |
| [16] | (陈恩庆, 唐永和, 王蕾, 任江波, 林伟英, 有机化学, 2021, 41, 1200.) |
| [17] | Wang T.; Jr E. F. D.; Fitzgerald K. J.; Spiegel D. A. J. Am. Chem. Soc. 2013, 135, 12429. |
| [18] | Tang T.; Zhou Y.-M.; Chen Y.-Q.; Li M.-J.; Feng Y.; Wang C.-C.; Wang S.-R.; Zhou X. Anal. Methods, 2015, 7, 2386. |
| [19] | Zhang W.-Z.; Zhang F.-Y.; Wang Y.-L.; Song B.; Zhang R.; Yuan J. L. Inorg. Chem. 2017, 56, 1309. |
| [20] | Liu C.; Jiao X.-J.; He S.; Zhao L.-C.; Zeng X.-S. Dyes Pigm. 2017, 138, 23. |
| [21] | Yang M.-W.; Fan J.-L.; Zhang J.-W.; Du J.-J.; Peng X.-J. Chem. Sci. 2018, 9, 6758. |
| [22] | Gao S.-Y.; Tang Y.-H.; Lin W.-Y. J. Fluoresc. 2019, 29, 155. |
| [23] | Ding C.-Y.; Wang F.-Y.; Dang Y.-J.; Xu Zh.-A.; Li L.-L.; Lai Y.; Yu H.-J.; Luo Y.; Huang R.-M.; Zhang A.; Zhang W. Anal. Chem. 2019, 91, 15577. |
| [24] | Dang Y.-J.; Wang F.-Y.; Li L.-L.; Lai Y.; Xu Z.-A.; Xiong Z.; Zhang A.; Tian Y.; Ding C.-Y.; Zhang W. Chem. Commun. 2020, 56, 707. |
| [25] | Liu J.; Li M.; Dang Y.-J.; Lou H.-M.; Xu Z.-A.; Zhang W. Biosens. Bioelectron. 2022 204, 114068. |
| [26] | (a) Dang Y.-J.; Lai Y.; Chen F.-P.; Sun O.; Ding C.-Y.; Zhang W.; Xu Z.-A. Anal. Chem. 2022, 94, 1076. |
| [26] | (b) Dang Y.-J. Ph.D. Dissertation, East China Normal University, Shanghai, 2021 (in Chinese). |
| [26] | (党?菁, 博士论文, 华东师范大学, 上海, 2021.) |
| [27] | Wang H.-L.; Xu Y.-L.; Rao L.; Yang C.-T.; Yuan H.; Gao T.-J.; Chen X.; Sun H.-Y.; Xian M.; Liu C.-R.; Liu C.-L. Anal. Chem. 2019, 91, 5646. |
| [28] | Xu H.; Liu Q.-Q.; Song X.-D.; Wang C.; Wang X.-R.; Ma S.-N.; Wang X.-L.; Feng Y.; Meng X.-M.; Liu X.-G.; Wang W.; Lou K.-Y. Anal. Chem. 2020, 92, 13829. |
| [29] | Wang W.-L.; Chen J.-W.; Ma H.-J.; Xing W.-J.; Lv N.; Zhang B.-N.; Xu H.; Wang W.; Lou K.-Y. Chem. Commun. 2021, 57, 8166. |
| [30] | Chen J.-W.; Lin Y.-N.; Xing W.-J.; Zhang X.-C.; Xu H.; Wang W.; Lou K.-Y. RSC Adv. 2022, 12, 9473. |
| [31] | Wang Z.-M.; Bian Y.-Y.; Liu C.; He S.; Zhao L.-C.; Zeng X.-S. Chem. Commun. 2022, 58, 6453. |
| [32] | Xu H.; Liu X.-R.; Cai Z.-H.; Zheng J.-F.; Wang Y.-W.; Peng Y. Org. Biomol. Chem. 2022, 20, 4782. |
| [33] | Zhang Y.; Li W.; Chen X.-Q.; Xiong S.-Q.; Bian Y.-N.; Yuan L.; Gao X.-Y.; Su D.-D. Anal. Chem. 2023, 95, 2579. |
| [34] | Ma Y.; Shang J.-H.; Liu L.-H.; Li M.-H.; Xu X.-Y.; Cao H.; Xu L.; Sun W.; Song G.-S.; Zhang X.-B. J. Am. Chem. Soc. 2023, 145, 17881. |
/
| 〈 |
|
〉 |